了解 SARS-CoV-2 对肺内皮细胞的影响:简要机制揭秘

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fahad Hassan Shah, Jun Young Bang, Yoon Seok Nam, In Seo Hwang, Dae Hong Kim, Minkyoung Ki, Saad Salman, Heon-Woo Lee
{"title":"了解 SARS-CoV-2 对肺内皮细胞的影响:简要机制揭秘","authors":"Fahad Hassan Shah, Jun Young Bang, Yoon Seok Nam, In Seo Hwang, Dae Hong Kim, Minkyoung Ki, Saad Salman, Heon-Woo Lee","doi":"10.1007/s12013-024-01529-w","DOIUrl":null,"url":null,"abstract":"<p><p>As the world grapples with the coronavirus-19 (COVID) pandemic, more reports are coming in regarding Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in endotheliopathy. It is a vascular condition in which endothelial cell injury or damage inflicts anatomical and functional changes in the endothelium, significantly impacting the physiological process and function. Previously, it was assumed that SARS-CoV-2 infects respiratory epithelial cells via spike glycoproteins present on the surface of the virus. However, severe cases and different autopsy studies described the clandestine role of this virus in infecting endothelial cells other than epithelial cells. It was observed that SARS-CoV-2 targets the pulmonary and extrapulmonary systems to damage the microvasculature and affect respiratory functioning, resulting in the onset of endotheliopathy, thrombosis, inflammation, pulmonary edema, and fibrosis. Such deleterious events are the consequence of the hyperactive immune response initiated by the SARS-CoV-2 infection, leading to pulmonary and extrapulmonary complications. However, the molecular mechanism behind endotheliopathy and other complications caused by this virus is elusive and will be unraveled by covering recent literature in this mini-review.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Impact of SARS-CoV-2 on Lung Endothelial Cells: Brief Mechanisms Unveiled.\",\"authors\":\"Fahad Hassan Shah, Jun Young Bang, Yoon Seok Nam, In Seo Hwang, Dae Hong Kim, Minkyoung Ki, Saad Salman, Heon-Woo Lee\",\"doi\":\"10.1007/s12013-024-01529-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the world grapples with the coronavirus-19 (COVID) pandemic, more reports are coming in regarding Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in endotheliopathy. It is a vascular condition in which endothelial cell injury or damage inflicts anatomical and functional changes in the endothelium, significantly impacting the physiological process and function. Previously, it was assumed that SARS-CoV-2 infects respiratory epithelial cells via spike glycoproteins present on the surface of the virus. However, severe cases and different autopsy studies described the clandestine role of this virus in infecting endothelial cells other than epithelial cells. It was observed that SARS-CoV-2 targets the pulmonary and extrapulmonary systems to damage the microvasculature and affect respiratory functioning, resulting in the onset of endotheliopathy, thrombosis, inflammation, pulmonary edema, and fibrosis. Such deleterious events are the consequence of the hyperactive immune response initiated by the SARS-CoV-2 infection, leading to pulmonary and extrapulmonary complications. However, the molecular mechanism behind endotheliopathy and other complications caused by this virus is elusive and will be unraveled by covering recent literature in this mini-review.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01529-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01529-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在全球努力应对冠状病毒-19(COVID)大流行的同时,有关严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)内皮病变的报道也越来越多。这是一种血管病变,内皮细胞损伤或受损会引起内皮的解剖和功能变化,严重影响生理过程和功能。以前,人们认为 SARS-CoV-2 通过病毒表面的尖峰糖蛋白感染呼吸道上皮细胞。然而,严重病例和不同的尸检研究表明,这种病毒除感染上皮细胞外,还感染内皮细胞。据观察,SARS-CoV-2 以肺部和肺外系统为目标,损害微血管,影响呼吸功能,导致内皮细胞病变、血栓形成、炎症、肺水肿和纤维化。这些有害事件是由 SARS-CoV-2 感染引发的过度活跃的免疫反应的结果,从而导致肺部和肺外并发症。然而,由该病毒引起的内皮细胞病变和其他并发症背后的分子机制尚不明确,本篇小综述将通过最新文献对其进行解读。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding the Impact of SARS-CoV-2 on Lung Endothelial Cells: Brief Mechanisms Unveiled.

As the world grapples with the coronavirus-19 (COVID) pandemic, more reports are coming in regarding Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in endotheliopathy. It is a vascular condition in which endothelial cell injury or damage inflicts anatomical and functional changes in the endothelium, significantly impacting the physiological process and function. Previously, it was assumed that SARS-CoV-2 infects respiratory epithelial cells via spike glycoproteins present on the surface of the virus. However, severe cases and different autopsy studies described the clandestine role of this virus in infecting endothelial cells other than epithelial cells. It was observed that SARS-CoV-2 targets the pulmonary and extrapulmonary systems to damage the microvasculature and affect respiratory functioning, resulting in the onset of endotheliopathy, thrombosis, inflammation, pulmonary edema, and fibrosis. Such deleterious events are the consequence of the hyperactive immune response initiated by the SARS-CoV-2 infection, leading to pulmonary and extrapulmonary complications. However, the molecular mechanism behind endotheliopathy and other complications caused by this virus is elusive and will be unraveled by covering recent literature in this mini-review.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信