鉴别 ADP 核糖基化阅读器的探索:方法学上的进步。

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
ACS Chemical Biology Pub Date : 2024-11-01 Epub Date: 2024-09-19 DOI:10.1016/j.tibs.2024.08.006
Suzanne A Weijers, Michiel Vermeulen, Katarzyna W Kliza
{"title":"鉴别 ADP 核糖基化阅读器的探索:方法学上的进步。","authors":"Suzanne A Weijers, Michiel Vermeulen, Katarzyna W Kliza","doi":"10.1016/j.tibs.2024.08.006","DOIUrl":null,"url":null,"abstract":"<p><p>ADP-ribosylation regulates numerous fundamental cellular processes in health and disease. However, the limited availability of suitable tools and methods prevents the identification and characterization of certain components of the ADP-ribosylation signaling network and, consequently, efficient utilization of their biomedical potential. Identification of ADP-ribose (ADPr) readers has been particularly impeded by challenges associated with the development of ADPr-based enrichment probes. These difficulties were finally overcome in several recent studies describing various approaches to identifying ADPr readers in an unbiased, proteome-wide manner. In this review we discuss these different strategies and their limitations, benefits and drawbacks, and summarize how these technologies contribute to a dissection of ADP-ribosylation signaling networks. We also address unmet technological needs and future directions to investigate interactions with ADPr linkages.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The quest to identify ADP-ribosylation readers: methodological advances.\",\"authors\":\"Suzanne A Weijers, Michiel Vermeulen, Katarzyna W Kliza\",\"doi\":\"10.1016/j.tibs.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ADP-ribosylation regulates numerous fundamental cellular processes in health and disease. However, the limited availability of suitable tools and methods prevents the identification and characterization of certain components of the ADP-ribosylation signaling network and, consequently, efficient utilization of their biomedical potential. Identification of ADP-ribose (ADPr) readers has been particularly impeded by challenges associated with the development of ADPr-based enrichment probes. These difficulties were finally overcome in several recent studies describing various approaches to identifying ADPr readers in an unbiased, proteome-wide manner. In this review we discuss these different strategies and their limitations, benefits and drawbacks, and summarize how these technologies contribute to a dissection of ADP-ribosylation signaling networks. We also address unmet technological needs and future directions to investigate interactions with ADPr linkages.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tibs.2024.08.006\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tibs.2024.08.006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

ADP-ribosylation 调节着健康和疾病中的许多基本细胞过程。然而,由于可用的合适工具和方法有限,ADP-核糖基化信号网络中某些成分的鉴定和表征工作受到阻碍,从而无法有效利用其生物医学潜力。ADP-核糖(ADPr)阅读器的鉴定尤其受到与开发基于 ADPr 的富集探针相关的挑战的阻碍。最近的几项研究最终克服了这些困难,这些研究描述了以无偏见、全蛋白质组的方式鉴定 ADPr 阅读器的各种方法。在这篇综述中,我们讨论了这些不同的策略及其局限性、优点和缺点,并总结了这些技术如何有助于剖析 ADP-ribosylation 信号网络。我们还讨论了尚未满足的技术需求以及研究 ADPr 连接相互作用的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The quest to identify ADP-ribosylation readers: methodological advances.

ADP-ribosylation regulates numerous fundamental cellular processes in health and disease. However, the limited availability of suitable tools and methods prevents the identification and characterization of certain components of the ADP-ribosylation signaling network and, consequently, efficient utilization of their biomedical potential. Identification of ADP-ribose (ADPr) readers has been particularly impeded by challenges associated with the development of ADPr-based enrichment probes. These difficulties were finally overcome in several recent studies describing various approaches to identifying ADPr readers in an unbiased, proteome-wide manner. In this review we discuss these different strategies and their limitations, benefits and drawbacks, and summarize how these technologies contribute to a dissection of ADP-ribosylation signaling networks. We also address unmet technological needs and future directions to investigate interactions with ADPr linkages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信