利用原位透射电子显微镜对纳米线进行微加热器控制晶相工程。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Small Methods Pub Date : 2025-01-01 Epub Date: 2024-09-23 DOI:10.1002/smtd.202400728
Christopher R Y Andersen, Marcus Tornberg, Sebastian Lehmann, Daniel Jacobsson, Kimberly A Dick, Kristian S Mølhave
{"title":"利用原位透射电子显微镜对纳米线进行微加热器控制晶相工程。","authors":"Christopher R Y Andersen, Marcus Tornberg, Sebastian Lehmann, Daniel Jacobsson, Kimberly A Dick, Kristian S Mølhave","doi":"10.1002/smtd.202400728","DOIUrl":null,"url":null,"abstract":"<p><p>Crystal Phase Quantum Dots (CPQDs) offer promising properties for quantum communication. How CPQDs can be formed in Au-catalyzed GaAs nanowires using different precursor flows and temperatures by in situ environmental transmission electron microscopy (ETEM) experiments is studied. A III-V gas supply system controls the precursor flow and custom-built micro electro-mechanical system (MEMS) chips with monocrystalline Si-cantilevers are used for temperature control, forming a micrometer-scale metal-organic vapor phase epitaxy (µMOVPE) system. The preferentially formed crystal phases are mapped at different precursor flows and temperatures to determine optimal growth parameters for either crystal phase. To control the position and length of CPQDs, the time scale for crystal phase change is investigated. The micrometer size of the cantilevers allows temperature shifts of more than 100 °C within 0.1 s at the nanowire growth temperature, which can be much faster than the growth time for a single lattice layer. For controlling the crystal phase, the temperature change is found to be superior to precursor flow, which takes tens of seconds for the crystal phase formation to react. This µMOVPE approach may ultimately provide faster temperature control than bulk MOVPE systems and hence enable engineering sequences of CPQDs with quantum dot lengths and positions defined with atomic precision.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400728"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740929/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microheater Controlled Crystal Phase Engineering of Nanowires Using In Situ Transmission Electron Microscopy.\",\"authors\":\"Christopher R Y Andersen, Marcus Tornberg, Sebastian Lehmann, Daniel Jacobsson, Kimberly A Dick, Kristian S Mølhave\",\"doi\":\"10.1002/smtd.202400728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crystal Phase Quantum Dots (CPQDs) offer promising properties for quantum communication. How CPQDs can be formed in Au-catalyzed GaAs nanowires using different precursor flows and temperatures by in situ environmental transmission electron microscopy (ETEM) experiments is studied. A III-V gas supply system controls the precursor flow and custom-built micro electro-mechanical system (MEMS) chips with monocrystalline Si-cantilevers are used for temperature control, forming a micrometer-scale metal-organic vapor phase epitaxy (µMOVPE) system. The preferentially formed crystal phases are mapped at different precursor flows and temperatures to determine optimal growth parameters for either crystal phase. To control the position and length of CPQDs, the time scale for crystal phase change is investigated. The micrometer size of the cantilevers allows temperature shifts of more than 100 °C within 0.1 s at the nanowire growth temperature, which can be much faster than the growth time for a single lattice layer. For controlling the crystal phase, the temperature change is found to be superior to precursor flow, which takes tens of seconds for the crystal phase formation to react. This µMOVPE approach may ultimately provide faster temperature control than bulk MOVPE systems and hence enable engineering sequences of CPQDs with quantum dot lengths and positions defined with atomic precision.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2400728\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740929/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202400728\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400728","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

晶相量子点(CPQDs)在量子通信方面具有广阔的前景。通过原位环境透射电子显微镜(ETEM)实验,研究了如何利用不同的前驱体流量和温度在金催化砷化镓纳米线中形成 CPQD。Ⅲ-Ⅴ族供气系统控制前驱体的流动,定制的微机电系统(MEMS)芯片与单晶硅悬臂用于温度控制,形成了微米级金属有机气相外延(µMOVPE)系统。在不同的前驱体流量和温度下,对优先形成的晶相进行映射,以确定任一晶相的最佳生长参数。为了控制 CPQD 的位置和长度,研究了晶体相变的时间尺度。悬臂的微米尺寸允许在纳米线生长温度下的 0.1 秒内发生超过 100 °C 的温度变化,这比单个晶格层的生长时间要快得多。在控制晶相方面,温度变化优于前驱体流动,前驱体流动需要几十秒的时间来反应晶相的形成。这种 µMOVPE 方法最终可提供比体 MOVPE 系统更快的温度控制,从而实现以原子精度定义量子点长度和位置的 CPQD 工程序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microheater Controlled Crystal Phase Engineering of Nanowires Using In Situ Transmission Electron Microscopy.

Crystal Phase Quantum Dots (CPQDs) offer promising properties for quantum communication. How CPQDs can be formed in Au-catalyzed GaAs nanowires using different precursor flows and temperatures by in situ environmental transmission electron microscopy (ETEM) experiments is studied. A III-V gas supply system controls the precursor flow and custom-built micro electro-mechanical system (MEMS) chips with monocrystalline Si-cantilevers are used for temperature control, forming a micrometer-scale metal-organic vapor phase epitaxy (µMOVPE) system. The preferentially formed crystal phases are mapped at different precursor flows and temperatures to determine optimal growth parameters for either crystal phase. To control the position and length of CPQDs, the time scale for crystal phase change is investigated. The micrometer size of the cantilevers allows temperature shifts of more than 100 °C within 0.1 s at the nanowire growth temperature, which can be much faster than the growth time for a single lattice layer. For controlling the crystal phase, the temperature change is found to be superior to precursor flow, which takes tens of seconds for the crystal phase formation to react. This µMOVPE approach may ultimately provide faster temperature control than bulk MOVPE systems and hence enable engineering sequences of CPQDs with quantum dot lengths and positions defined with atomic precision.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信