Yaqi Song , Tian-Yu Sun , Xiao-Feng Xia , Dawei Wang
{"title":"由电子供体-受体复合物引发的烯酰胺和喹喔啉酮的 C-H 三氟甲基化和全氟烷基化反应。","authors":"Yaqi Song , Tian-Yu Sun , Xiao-Feng Xia , Dawei Wang","doi":"10.1039/d4ob01228c","DOIUrl":null,"url":null,"abstract":"<div><div>Facilitated by an electron donor–acceptor (EDA) complex, an efficient β-trifluoromethylation and perfluoroalkylation of enamides with Togni reagent or perfluoroalkyl iodides is presented under transition-metal-free, photocatalyst-free and mild reaction conditions. Notably, using this photocatalyst-free strategy, direct trifluoromethylation and perfluoroalkylation of quinoxalin-2(1<em>H</em>)-one derivatives was also achieved <em>via</em> a photoactive electron donor–acceptor complex.</div></div>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":"22 41","pages":"Pages 8317-8322"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An electron donor–acceptor complex-initiated C–H trifluoromethylation and perfluoroalkylation of enamides and quinoxalinones†\",\"authors\":\"Yaqi Song , Tian-Yu Sun , Xiao-Feng Xia , Dawei Wang\",\"doi\":\"10.1039/d4ob01228c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Facilitated by an electron donor–acceptor (EDA) complex, an efficient β-trifluoromethylation and perfluoroalkylation of enamides with Togni reagent or perfluoroalkyl iodides is presented under transition-metal-free, photocatalyst-free and mild reaction conditions. Notably, using this photocatalyst-free strategy, direct trifluoromethylation and perfluoroalkylation of quinoxalin-2(1<em>H</em>)-one derivatives was also achieved <em>via</em> a photoactive electron donor–acceptor complex.</div></div>\",\"PeriodicalId\":96,\"journal\":{\"name\":\"Organic & Biomolecular Chemistry\",\"volume\":\"22 41\",\"pages\":\"Pages 8317-8322\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic & Biomolecular Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1477052024008449\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1477052024008449","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
An electron donor–acceptor complex-initiated C–H trifluoromethylation and perfluoroalkylation of enamides and quinoxalinones†
Facilitated by an electron donor–acceptor (EDA) complex, an efficient β-trifluoromethylation and perfluoroalkylation of enamides with Togni reagent or perfluoroalkyl iodides is presented under transition-metal-free, photocatalyst-free and mild reaction conditions. Notably, using this photocatalyst-free strategy, direct trifluoromethylation and perfluoroalkylation of quinoxalin-2(1H)-one derivatives was also achieved via a photoactive electron donor–acceptor complex.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.