Rok Narobe, Marcel Nicolas Perner, María de Jesús Gálvez-Vázquez, Conrad Kuhwald, Martin Klein, Peter Broekmann, Sina Rösler, Bertram Cezanne and Siegfried R. Waldvogel
{"title":"在泡沫镍阴极上对腈进行实际电化学氢化。","authors":"Rok Narobe, Marcel Nicolas Perner, María de Jesús Gálvez-Vázquez, Conrad Kuhwald, Martin Klein, Peter Broekmann, Sina Rösler, Bertram Cezanne and Siegfried R. Waldvogel","doi":"10.1039/D4GC03446E","DOIUrl":null,"url":null,"abstract":"<p >We report a scalable hydrogenation method for nitriles based on cost-effective materials in a very simple two-electrode setup under galvanostatic conditions. All components are commercially and readily available. The method is very easy to conduct and applicable to a variety of nitrile substrates, leading exclusively to primary amine products in yields of up to 89% using an easy work-up protocol. Importantly, this method is readily transferable from the milligram scale in batch-type screening cells to the multi-gram scale in a flow-type electrolyser. The transfer to flow electrolysis enabled us to achieve a notable 20 g day<small><sup>−1</sup></small> productivity of phenylethylamine at a geometric current density of 50 mA cm<small><sup>−2</sup></small> in a flow-type electrolyser with 48 cm<small><sup>2</sup></small> electrodes. It is noteworthy that this method is sustainable in terms of process safety and reusability of components.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413620/pdf/","citationCount":"0","resultStr":"{\"title\":\"Practical electrochemical hydrogenation of nitriles at the nickel foam cathode†\",\"authors\":\"Rok Narobe, Marcel Nicolas Perner, María de Jesús Gálvez-Vázquez, Conrad Kuhwald, Martin Klein, Peter Broekmann, Sina Rösler, Bertram Cezanne and Siegfried R. Waldvogel\",\"doi\":\"10.1039/D4GC03446E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We report a scalable hydrogenation method for nitriles based on cost-effective materials in a very simple two-electrode setup under galvanostatic conditions. All components are commercially and readily available. The method is very easy to conduct and applicable to a variety of nitrile substrates, leading exclusively to primary amine products in yields of up to 89% using an easy work-up protocol. Importantly, this method is readily transferable from the milligram scale in batch-type screening cells to the multi-gram scale in a flow-type electrolyser. The transfer to flow electrolysis enabled us to achieve a notable 20 g day<small><sup>−1</sup></small> productivity of phenylethylamine at a geometric current density of 50 mA cm<small><sup>−2</sup></small> in a flow-type electrolyser with 48 cm<small><sup>2</sup></small> electrodes. It is noteworthy that this method is sustainable in terms of process safety and reusability of components.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413620/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/gc/d4gc03446e\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/gc/d4gc03446e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Practical electrochemical hydrogenation of nitriles at the nickel foam cathode†
We report a scalable hydrogenation method for nitriles based on cost-effective materials in a very simple two-electrode setup under galvanostatic conditions. All components are commercially and readily available. The method is very easy to conduct and applicable to a variety of nitrile substrates, leading exclusively to primary amine products in yields of up to 89% using an easy work-up protocol. Importantly, this method is readily transferable from the milligram scale in batch-type screening cells to the multi-gram scale in a flow-type electrolyser. The transfer to flow electrolysis enabled us to achieve a notable 20 g day−1 productivity of phenylethylamine at a geometric current density of 50 mA cm−2 in a flow-type electrolyser with 48 cm2 electrodes. It is noteworthy that this method is sustainable in terms of process safety and reusability of components.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.