Jarvis Hill, R Houston Givhan, Bin Yi, Robert M Jones, Eugene F Douglass, Yaguang Xi, Henry F Schaefer, David Crich
{"title":"计算驱动发现对多药耐药慢性髓性白血病有疗效的 BCR-ABL1 激酶抑制剂","authors":"Jarvis Hill, R Houston Givhan, Bin Yi, Robert M Jones, Eugene F Douglass, Yaguang Xi, Henry F Schaefer, David Crich","doi":"10.1021/acs.jmedchem.4c01852","DOIUrl":null,"url":null,"abstract":"<p><p>The permeability glycoprotein, encoded by the <i>ABCB1</i> gene, is widely implicated in multidrug resistance (MDR), as it has been shown to reduce the intracellular concentration of most small molecule therapeutics, including the majority of the breakpoint cluster region Abelson proto-oncogene 1 (BCR-ABL1) kinase inhibitors used in the treatment of Philadelphia chromosome positive (Ph+) leukemias. With this in mind, we describe an integrated theoretical and experimental approach to shed light on substituent effects in the pendant anilino moiety of 4-anilinoquinazolines and 4-anilinoquinoline-3-carbonitrile-based kinase inhibitors and their influence on P-gp-mediated efflux. This analysis culminated in the identification of a hydroxylamine-bearing, dual cSRC/BCR-ABL1 kinase inhibitor <b>16a</b> that exhibits a marked reduction in P-gp-mediated efflux ratio and potent activity in a Ph+ patient-derived cell line (K562) and an MDR-Ph+ patient-derived cell line (K562/Dox) overexpressing P-gp. Overall, we demonstrate that the P-gp-mediated efflux ratio can be minimized by computationally driven optimization of the molecular dipole and/or cp<i>K</i><sub>a</sub> without recourse to intramolecular hydrogen bonds.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472320/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computationally Driven Discovery of a BCR-ABL1 Kinase Inhibitor with Activity in Multidrug-Resistant Chronic Myeloid Leukemia.\",\"authors\":\"Jarvis Hill, R Houston Givhan, Bin Yi, Robert M Jones, Eugene F Douglass, Yaguang Xi, Henry F Schaefer, David Crich\",\"doi\":\"10.1021/acs.jmedchem.4c01852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The permeability glycoprotein, encoded by the <i>ABCB1</i> gene, is widely implicated in multidrug resistance (MDR), as it has been shown to reduce the intracellular concentration of most small molecule therapeutics, including the majority of the breakpoint cluster region Abelson proto-oncogene 1 (BCR-ABL1) kinase inhibitors used in the treatment of Philadelphia chromosome positive (Ph+) leukemias. With this in mind, we describe an integrated theoretical and experimental approach to shed light on substituent effects in the pendant anilino moiety of 4-anilinoquinazolines and 4-anilinoquinoline-3-carbonitrile-based kinase inhibitors and their influence on P-gp-mediated efflux. This analysis culminated in the identification of a hydroxylamine-bearing, dual cSRC/BCR-ABL1 kinase inhibitor <b>16a</b> that exhibits a marked reduction in P-gp-mediated efflux ratio and potent activity in a Ph+ patient-derived cell line (K562) and an MDR-Ph+ patient-derived cell line (K562/Dox) overexpressing P-gp. Overall, we demonstrate that the P-gp-mediated efflux ratio can be minimized by computationally driven optimization of the molecular dipole and/or cp<i>K</i><sub>a</sub> without recourse to intramolecular hydrogen bonds.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472320/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c01852\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01852","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Computationally Driven Discovery of a BCR-ABL1 Kinase Inhibitor with Activity in Multidrug-Resistant Chronic Myeloid Leukemia.
The permeability glycoprotein, encoded by the ABCB1 gene, is widely implicated in multidrug resistance (MDR), as it has been shown to reduce the intracellular concentration of most small molecule therapeutics, including the majority of the breakpoint cluster region Abelson proto-oncogene 1 (BCR-ABL1) kinase inhibitors used in the treatment of Philadelphia chromosome positive (Ph+) leukemias. With this in mind, we describe an integrated theoretical and experimental approach to shed light on substituent effects in the pendant anilino moiety of 4-anilinoquinazolines and 4-anilinoquinoline-3-carbonitrile-based kinase inhibitors and their influence on P-gp-mediated efflux. This analysis culminated in the identification of a hydroxylamine-bearing, dual cSRC/BCR-ABL1 kinase inhibitor 16a that exhibits a marked reduction in P-gp-mediated efflux ratio and potent activity in a Ph+ patient-derived cell line (K562) and an MDR-Ph+ patient-derived cell line (K562/Dox) overexpressing P-gp. Overall, we demonstrate that the P-gp-mediated efflux ratio can be minimized by computationally driven optimization of the molecular dipole and/or cpKa without recourse to intramolecular hydrogen bonds.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.