Till Fuchs, Till Ortmann, Juri Becker, Catherine G. Haslam, Maya Ziegler, Vipin Kumar Singh, Marcus Rohnke, Boris Mogwitz, Klaus Peppler, Linda F. Nazar, Jeff Sakamoto, Jürgen Janek
{"title":"利用电子反向散射衍射成像无阳极固态电池中锂和金属钠的微观结构","authors":"Till Fuchs, Till Ortmann, Juri Becker, Catherine G. Haslam, Maya Ziegler, Vipin Kumar Singh, Marcus Rohnke, Boris Mogwitz, Klaus Peppler, Linda F. Nazar, Jeff Sakamoto, Jürgen Janek","doi":"10.1038/s41563-024-02006-8","DOIUrl":null,"url":null,"abstract":"‘Anode-free’ or, more fittingly, metal reservoir-free cells could drastically improve current solid-state battery technology by achieving higher energy density, improving safety and simplifying manufacturing. Various strategies have been reported so far to control the morphology of electrodeposited alkali metal films to be homogeneous and dense, but until now, the microstructure of electrodeposited alkali metal is unknown, and a suitable characterization route is yet to be identified. Here we establish a reproducible protocol for characterizing the size and orientation of metal grains in differently processed lithium and sodium samples by a combination of focused ion beam and electron backscatter diffraction. Electrodeposited films at Cu|Li6.5Ta0.5La3Zr1.5O12, steel|Li6PS5Cl and Al|Na3.4Zr2Si2.4P0.6O12 interfaces were characterized. The analyses show large grain sizes (>100 µm) within these films and a preferential orientation of grain boundaries. Furthermore, metal growth and dissolution were investigated using in situ electron backscatter diffraction, showing a dynamic grain coarsening during electrodeposition and pore formation within grains during dissolution. Our methodology and results deepen the research field for the improvement of solid-state battery performance through a characterization of the alkali metal microstructure. The microstructure of alkali metals in anode-free cells is currently unknown. Here, using a combination of focused ion beam and electron backscatter diffraction, this morphology is investigated, with in situ scanning electron microscopy showing dynamic grain coarsening during electrodeposition.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 12","pages":"1678-1685"},"PeriodicalIF":37.2000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41563-024-02006-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Imaging the microstructure of lithium and sodium metal in anode-free solid-state batteries using electron backscatter diffraction\",\"authors\":\"Till Fuchs, Till Ortmann, Juri Becker, Catherine G. Haslam, Maya Ziegler, Vipin Kumar Singh, Marcus Rohnke, Boris Mogwitz, Klaus Peppler, Linda F. Nazar, Jeff Sakamoto, Jürgen Janek\",\"doi\":\"10.1038/s41563-024-02006-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‘Anode-free’ or, more fittingly, metal reservoir-free cells could drastically improve current solid-state battery technology by achieving higher energy density, improving safety and simplifying manufacturing. Various strategies have been reported so far to control the morphology of electrodeposited alkali metal films to be homogeneous and dense, but until now, the microstructure of electrodeposited alkali metal is unknown, and a suitable characterization route is yet to be identified. Here we establish a reproducible protocol for characterizing the size and orientation of metal grains in differently processed lithium and sodium samples by a combination of focused ion beam and electron backscatter diffraction. Electrodeposited films at Cu|Li6.5Ta0.5La3Zr1.5O12, steel|Li6PS5Cl and Al|Na3.4Zr2Si2.4P0.6O12 interfaces were characterized. The analyses show large grain sizes (>100 µm) within these films and a preferential orientation of grain boundaries. Furthermore, metal growth and dissolution were investigated using in situ electron backscatter diffraction, showing a dynamic grain coarsening during electrodeposition and pore formation within grains during dissolution. Our methodology and results deepen the research field for the improvement of solid-state battery performance through a characterization of the alkali metal microstructure. The microstructure of alkali metals in anode-free cells is currently unknown. Here, using a combination of focused ion beam and electron backscatter diffraction, this morphology is investigated, with in situ scanning electron microscopy showing dynamic grain coarsening during electrodeposition.\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"23 12\",\"pages\":\"1678-1685\"},\"PeriodicalIF\":37.2000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41563-024-02006-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41563-024-02006-8\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-024-02006-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Imaging the microstructure of lithium and sodium metal in anode-free solid-state batteries using electron backscatter diffraction
‘Anode-free’ or, more fittingly, metal reservoir-free cells could drastically improve current solid-state battery technology by achieving higher energy density, improving safety and simplifying manufacturing. Various strategies have been reported so far to control the morphology of electrodeposited alkali metal films to be homogeneous and dense, but until now, the microstructure of electrodeposited alkali metal is unknown, and a suitable characterization route is yet to be identified. Here we establish a reproducible protocol for characterizing the size and orientation of metal grains in differently processed lithium and sodium samples by a combination of focused ion beam and electron backscatter diffraction. Electrodeposited films at Cu|Li6.5Ta0.5La3Zr1.5O12, steel|Li6PS5Cl and Al|Na3.4Zr2Si2.4P0.6O12 interfaces were characterized. The analyses show large grain sizes (>100 µm) within these films and a preferential orientation of grain boundaries. Furthermore, metal growth and dissolution were investigated using in situ electron backscatter diffraction, showing a dynamic grain coarsening during electrodeposition and pore formation within grains during dissolution. Our methodology and results deepen the research field for the improvement of solid-state battery performance through a characterization of the alkali metal microstructure. The microstructure of alkali metals in anode-free cells is currently unknown. Here, using a combination of focused ion beam and electron backscatter diffraction, this morphology is investigated, with in situ scanning electron microscopy showing dynamic grain coarsening during electrodeposition.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.