解读缺陷偶极子对包晶铁电体极化和电应变行为的影响

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Geng Huangfu, Jie Wang, Haiming Zhang, Jingsheng Chen, Zhen Liu, Yiping Guo
{"title":"解读缺陷偶极子对包晶铁电体极化和电应变行为的影响","authors":"Geng Huangfu, Jie Wang, Haiming Zhang, Jingsheng Chen, Zhen Liu, Yiping Guo","doi":"10.1021/acs.nanolett.4c03042","DOIUrl":null,"url":null,"abstract":"Defect dipoles are crucial for regulating electromechanical properties in piezoelectric ceramics, but their effects on polarization and electrostrain behaviors are still unclear. Here, a reasonable theoretical model is proposed and evidenced by experiments to address a long-standing puzzle of the relationship between the internal bias field and defect dipoles. By incorporating the additional polarization induced by defect dipoles, we refine the classical theory to account for the recently reported asymmetric giant-strain behaviors. Phase-field simulation reveals the electrostrain evolution in response to defect dipole elastic distortion and additional polarization. This work not only elucidates the effect of defect dipoles on polarization and electrostrain but also advances the theoretical understanding of defects in piezoelectrics.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"1 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the Effect of Defect Dipoles on the Polarization and Electrostrain Behavior in Perovskite Ferroelectrics\",\"authors\":\"Geng Huangfu, Jie Wang, Haiming Zhang, Jingsheng Chen, Zhen Liu, Yiping Guo\",\"doi\":\"10.1021/acs.nanolett.4c03042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Defect dipoles are crucial for regulating electromechanical properties in piezoelectric ceramics, but their effects on polarization and electrostrain behaviors are still unclear. Here, a reasonable theoretical model is proposed and evidenced by experiments to address a long-standing puzzle of the relationship between the internal bias field and defect dipoles. By incorporating the additional polarization induced by defect dipoles, we refine the classical theory to account for the recently reported asymmetric giant-strain behaviors. Phase-field simulation reveals the electrostrain evolution in response to defect dipole elastic distortion and additional polarization. This work not only elucidates the effect of defect dipoles on polarization and electrostrain but also advances the theoretical understanding of defects in piezoelectrics.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03042\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03042","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

缺陷偶极子对调节压电陶瓷的机电特性至关重要,但它们对极化和电应变行为的影响仍不清楚。本文提出了一个合理的理论模型,并通过实验证明了这一点,从而解决了内部偏置场与缺陷偶极子之间关系这一长期存在的难题。通过纳入缺陷偶极子引起的额外极化,我们完善了经典理论,以解释最近报道的非对称巨应变行为。相场模拟揭示了电应变在缺陷偶极子弹性变形和附加极化作用下的演变过程。这项工作不仅阐明了缺陷偶极子对极化和电应变的影响,还推进了对压电体中缺陷的理论理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deciphering the Effect of Defect Dipoles on the Polarization and Electrostrain Behavior in Perovskite Ferroelectrics

Deciphering the Effect of Defect Dipoles on the Polarization and Electrostrain Behavior in Perovskite Ferroelectrics
Defect dipoles are crucial for regulating electromechanical properties in piezoelectric ceramics, but their effects on polarization and electrostrain behaviors are still unclear. Here, a reasonable theoretical model is proposed and evidenced by experiments to address a long-standing puzzle of the relationship between the internal bias field and defect dipoles. By incorporating the additional polarization induced by defect dipoles, we refine the classical theory to account for the recently reported asymmetric giant-strain behaviors. Phase-field simulation reveals the electrostrain evolution in response to defect dipole elastic distortion and additional polarization. This work not only elucidates the effect of defect dipoles on polarization and electrostrain but also advances the theoretical understanding of defects in piezoelectrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信