热应激是否是温带地区奶牛饲养业日益严重的问题?德国巴登-符腾堡州案例研究

IF 2.7 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Miguel António Leandro, Joana Stock, Jörn Bennewitz, Mizeck G G Chagunda
{"title":"热应激是否是温带地区奶牛饲养业日益严重的问题?德国巴登-符腾堡州案例研究","authors":"Miguel António Leandro, Joana Stock, Jörn Bennewitz, Mizeck G G Chagunda","doi":"10.1093/jas/skae287","DOIUrl":null,"url":null,"abstract":"Heat stress with measurable effects in dairy cattle is a growing concern in temperate regions. Heat stress in temperate regions differs between environments with different geophysical characteristics. Microclimates specific to each environment were found to greatly impact at what level heat stress occurs and will occur in the future. The landlocked state of Baden-Württemberg, Germany, provides several different environments, hence, a good case-study. Temperature Humidity Index (THI) from 17 weather stations for the years 2003-2022 was calculated and milking yields from 22 farms for the years 2017-2022 were collected. The occurrences and evolving patterns of heat stress were analysed with use of a Temperature Humidity Index (THI), and the effect of heat stress on milk yield was analysed based on milking records from Automated Milking Systems (AMS). Daily average THI was calculated using hourly readings of relative humidity and ambient temperature, disregarding solar radiation and wind, as all animals were permanently stabled. Based on studies conducted in Baden-Württemberg and neighbouring regions, cited ahead in the section of Temperature Humidity Index, THI = 60 was the threshold for heat stress occurrence. Findings show that the heat stress period varied between stations from 64 to 120 days with THI ≥ 60 in a year. This aligns with yearly and summer averages, also steadily increasing from May to September. Length of heat stress period was found to increase 1 extra day every year. Extreme weather events such as heat waves did not increase the heat stress period of that year in length but increased the average THI. Milk yield was found to be significantly (α = 0.05) different between counties grouped into different zones according to heat stress severity and rate of increase in daily average THI. Future attempts at managing heat stress on dairy cattle farms in the temperate regions should account for microclimate, as geographical proximity does not mean that the increase in heat stress severity will be the same in the two neighbouring areas.","PeriodicalId":14895,"journal":{"name":"Journal of animal science","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is heat stress a growing problem for dairy cattle husbandry in the temperate regions? A case study of Baden-Württemberg in Germany\",\"authors\":\"Miguel António Leandro, Joana Stock, Jörn Bennewitz, Mizeck G G Chagunda\",\"doi\":\"10.1093/jas/skae287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heat stress with measurable effects in dairy cattle is a growing concern in temperate regions. Heat stress in temperate regions differs between environments with different geophysical characteristics. Microclimates specific to each environment were found to greatly impact at what level heat stress occurs and will occur in the future. The landlocked state of Baden-Württemberg, Germany, provides several different environments, hence, a good case-study. Temperature Humidity Index (THI) from 17 weather stations for the years 2003-2022 was calculated and milking yields from 22 farms for the years 2017-2022 were collected. The occurrences and evolving patterns of heat stress were analysed with use of a Temperature Humidity Index (THI), and the effect of heat stress on milk yield was analysed based on milking records from Automated Milking Systems (AMS). Daily average THI was calculated using hourly readings of relative humidity and ambient temperature, disregarding solar radiation and wind, as all animals were permanently stabled. Based on studies conducted in Baden-Württemberg and neighbouring regions, cited ahead in the section of Temperature Humidity Index, THI = 60 was the threshold for heat stress occurrence. Findings show that the heat stress period varied between stations from 64 to 120 days with THI ≥ 60 in a year. This aligns with yearly and summer averages, also steadily increasing from May to September. Length of heat stress period was found to increase 1 extra day every year. Extreme weather events such as heat waves did not increase the heat stress period of that year in length but increased the average THI. Milk yield was found to be significantly (α = 0.05) different between counties grouped into different zones according to heat stress severity and rate of increase in daily average THI. Future attempts at managing heat stress on dairy cattle farms in the temperate regions should account for microclimate, as geographical proximity does not mean that the increase in heat stress severity will be the same in the two neighbouring areas.\",\"PeriodicalId\":14895,\"journal\":{\"name\":\"Journal of animal science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of animal science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/jas/skae287\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of animal science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jas/skae287","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在温带地区,对奶牛造成可测量影响的热应激日益受到关注。温带地区的热应激在具有不同地球物理特征的环境中有所不同。研究发现,每种环境特有的小气候对热应激的发生程度和未来的发生程度有很大影响。德国巴登-符腾堡内陆州提供了几种不同的环境,因此是一个很好的研究案例。研究人员计算了 17 个气象站 2003-2022 年的温度湿度指数(THI),并收集了 22 个牧场 2017-2022 年的挤奶产量。利用温度湿度指数(THI)分析了热应激的发生和演变模式,并根据自动挤奶系统(AMS)的挤奶记录分析了热应激对牛奶产量的影响。由于所有牲畜都是长期圈养,因此不考虑太阳辐射和风力,利用每小时读取的相对湿度和环境温度计算日平均温湿度指数。根据前面 "温湿度指数 "一节中引用的巴登一符腾堡州和邻近地区的研究,THI = 60 是发生热应激的临界值。研究结果表明,在不同的站点,一年中 THI ≥ 60 的热应激期从 64 天到 120 天不等。这与年平均值和夏季平均值一致,从 5 月到 9 月也在稳步上升。热应激期的长度每年增加一天。热浪等极端天气事件不会增加当年热应激期的长度,但会增加平均热应激指数。根据热应激严重程度和日平均 THI 的增加率,发现不同地区的奶牛产奶量有显著差异(α = 0.05)。温带地区奶牛场热应激管理的未来尝试应考虑到小气候,因为地理位置相近并不意味着两个相邻地区热应激严重程度的增加相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Is heat stress a growing problem for dairy cattle husbandry in the temperate regions? A case study of Baden-Württemberg in Germany
Heat stress with measurable effects in dairy cattle is a growing concern in temperate regions. Heat stress in temperate regions differs between environments with different geophysical characteristics. Microclimates specific to each environment were found to greatly impact at what level heat stress occurs and will occur in the future. The landlocked state of Baden-Württemberg, Germany, provides several different environments, hence, a good case-study. Temperature Humidity Index (THI) from 17 weather stations for the years 2003-2022 was calculated and milking yields from 22 farms for the years 2017-2022 were collected. The occurrences and evolving patterns of heat stress were analysed with use of a Temperature Humidity Index (THI), and the effect of heat stress on milk yield was analysed based on milking records from Automated Milking Systems (AMS). Daily average THI was calculated using hourly readings of relative humidity and ambient temperature, disregarding solar radiation and wind, as all animals were permanently stabled. Based on studies conducted in Baden-Württemberg and neighbouring regions, cited ahead in the section of Temperature Humidity Index, THI = 60 was the threshold for heat stress occurrence. Findings show that the heat stress period varied between stations from 64 to 120 days with THI ≥ 60 in a year. This aligns with yearly and summer averages, also steadily increasing from May to September. Length of heat stress period was found to increase 1 extra day every year. Extreme weather events such as heat waves did not increase the heat stress period of that year in length but increased the average THI. Milk yield was found to be significantly (α = 0.05) different between counties grouped into different zones according to heat stress severity and rate of increase in daily average THI. Future attempts at managing heat stress on dairy cattle farms in the temperate regions should account for microclimate, as geographical proximity does not mean that the increase in heat stress severity will be the same in the two neighbouring areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of animal science
Journal of animal science 农林科学-奶制品与动物科学
CiteScore
4.80
自引率
12.10%
发文量
1589
审稿时长
3 months
期刊介绍: The Journal of Animal Science (JAS) is the premier journal for animal science and serves as the leading source of new knowledge and perspective in this area. JAS publishes more than 500 fully reviewed research articles, invited reviews, technical notes, and letters to the editor each year. Articles published in JAS encompass a broad range of research topics in animal production and fundamental aspects of genetics, nutrition, physiology, and preparation and utilization of animal products. Articles typically report research with beef cattle, companion animals, goats, horses, pigs, and sheep; however, studies involving other farm animals, aquatic and wildlife species, and laboratory animal species that address fundamental questions related to livestock and companion animal biology will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信