通过重新解释激光诱导击穿光谱成像的剂量来提高空间分辨率:概念化和局限性

David Ken Gibbs*, Maximilian Podsednik, Patrick Tapler, Maximilian Weiss, Alexander Karl Opitz, Michael Nelhiebel, Charles Derrick Quarles Jr, Silvia Larisegger and Andreas Limbeck*, 
{"title":"通过重新解释激光诱导击穿光谱成像的剂量来提高空间分辨率:概念化和局限性","authors":"David Ken Gibbs*,&nbsp;Maximilian Podsednik,&nbsp;Patrick Tapler,&nbsp;Maximilian Weiss,&nbsp;Alexander Karl Opitz,&nbsp;Michael Nelhiebel,&nbsp;Charles Derrick Quarles Jr,&nbsp;Silvia Larisegger and Andreas Limbeck*,&nbsp;","doi":"10.1021/cbmi.4c0004510.1021/cbmi.4c00045","DOIUrl":null,"url":null,"abstract":"<p >Elemental imaging in laser-induced breakdown spectroscopy is usually performed by placing laser shots adjacent to each other on the sample surface without spatial overlap. Seeing that signal intensity is directly related to the amount of ablated material, this restricts either spatial resolution (for a given excitation efficiency) or sensitivity (when reducing the laser spot size). The experimental applicability of a concept involving the spatial overlapping of shots on the sample surface is investigated and compared to the conventional approach. By systematic choice of spacing between laser shots, spatial resolution can be improved to the single digit micrometer range for a given laser spot size. Signal intensity is found to be linearly dependent on the area ablated per shot, facilitating larger signal-to-background ratios with increased spot sizes. Owing to this, the presented approach is also employed to enhance signal intensity, while preserving spatial resolution. The applicability of the method is explored by analyzing samples with distinct thickness of the surface layer, allowing for the assessment of the concept’s suitability for different sample types.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 9","pages":"631–639 631–639"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00045","citationCount":"0","resultStr":"{\"title\":\"Improving Spatial Resolution by Reinterpreting Dosage for Laser-Induced Breakdown Spectroscopy Imaging: Conceptualization and Limitations\",\"authors\":\"David Ken Gibbs*,&nbsp;Maximilian Podsednik,&nbsp;Patrick Tapler,&nbsp;Maximilian Weiss,&nbsp;Alexander Karl Opitz,&nbsp;Michael Nelhiebel,&nbsp;Charles Derrick Quarles Jr,&nbsp;Silvia Larisegger and Andreas Limbeck*,&nbsp;\",\"doi\":\"10.1021/cbmi.4c0004510.1021/cbmi.4c00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Elemental imaging in laser-induced breakdown spectroscopy is usually performed by placing laser shots adjacent to each other on the sample surface without spatial overlap. Seeing that signal intensity is directly related to the amount of ablated material, this restricts either spatial resolution (for a given excitation efficiency) or sensitivity (when reducing the laser spot size). The experimental applicability of a concept involving the spatial overlapping of shots on the sample surface is investigated and compared to the conventional approach. By systematic choice of spacing between laser shots, spatial resolution can be improved to the single digit micrometer range for a given laser spot size. Signal intensity is found to be linearly dependent on the area ablated per shot, facilitating larger signal-to-background ratios with increased spot sizes. Owing to this, the presented approach is also employed to enhance signal intensity, while preserving spatial resolution. The applicability of the method is explored by analyzing samples with distinct thickness of the surface layer, allowing for the assessment of the concept’s suitability for different sample types.</p>\",\"PeriodicalId\":53181,\"journal\":{\"name\":\"Chemical & Biomedical Imaging\",\"volume\":\"2 9\",\"pages\":\"631–639 631–639\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00045\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical & Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/cbmi.4c00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.4c00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在激光诱导击穿光谱中进行元素成像时,通常是在样品表面放置相邻的激光光斑,而不进行空间重叠。由于信号强度与烧蚀材料的数量直接相关,这就限制了空间分辨率(在给定的激发效率下)或灵敏度(在减小激光光斑尺寸时)。我们研究了涉及样品表面射束空间重叠的概念的实验适用性,并与传统方法进行了比较。通过系统地选择激光光斑之间的间距,在给定激光光斑尺寸的情况下,空间分辨率可提高到个位数微米范围。研究发现,信号强度与每次光斑烧蚀的面积呈线性关系,光斑尺寸越大,信噪比越大。因此,在保持空间分辨率的同时,所提出的方法还能增强信号强度。通过分析表面层厚度不同的样品,对该方法的适用性进行了探讨,从而评估了该概念对不同样品类型的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improving Spatial Resolution by Reinterpreting Dosage for Laser-Induced Breakdown Spectroscopy Imaging: Conceptualization and Limitations

Improving Spatial Resolution by Reinterpreting Dosage for Laser-Induced Breakdown Spectroscopy Imaging: Conceptualization and Limitations

Elemental imaging in laser-induced breakdown spectroscopy is usually performed by placing laser shots adjacent to each other on the sample surface without spatial overlap. Seeing that signal intensity is directly related to the amount of ablated material, this restricts either spatial resolution (for a given excitation efficiency) or sensitivity (when reducing the laser spot size). The experimental applicability of a concept involving the spatial overlapping of shots on the sample surface is investigated and compared to the conventional approach. By systematic choice of spacing between laser shots, spatial resolution can be improved to the single digit micrometer range for a given laser spot size. Signal intensity is found to be linearly dependent on the area ablated per shot, facilitating larger signal-to-background ratios with increased spot sizes. Owing to this, the presented approach is also employed to enhance signal intensity, while preserving spatial resolution. The applicability of the method is explored by analyzing samples with distinct thickness of the surface layer, allowing for the assessment of the concept’s suitability for different sample types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical & Biomedical Imaging
Chemical & Biomedical Imaging 化学与生物成像-
CiteScore
1.00
自引率
0.00%
发文量
0
期刊介绍: Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信