基于伪三维 REDOR 的魔角自旋核磁共振成像揭示完整 fd 噬菌体的动态变化

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Orr Simon Lusky, Dvir Sherer and Amir Goldbourt*, 
{"title":"基于伪三维 REDOR 的魔角自旋核磁共振成像揭示完整 fd 噬菌体的动态变化","authors":"Orr Simon Lusky,&nbsp;Dvir Sherer and Amir Goldbourt*,&nbsp;","doi":"10.1021/jacsau.4c0054910.1021/jacsau.4c00549","DOIUrl":null,"url":null,"abstract":"<p >The development of robust NMR methodologies to probe dynamics on the atomic scale is vital to elucidate the close relations between structure, motion, and function in biological systems. Here, we present an automated protocol to measure, using magic-angle spinning NMR, the effective <sup>13</sup>C–<sup>15</sup>N dipolar coupling constants between multiple spin pairs simultaneously with high accuracy. We use the experimental dipolar coupling constants to quantify the order parameters of multiple C–N bonds in the thousands of identical copies of the coat protein in intact fd-Y21M filamentous bacteriophage virus and describe its overall dynamics on the submillisecond time scale. The method is based on combining three pseudo three-dimensional NMR experiments, where a rotational echo double resonance (REDOR) dephasing block, designed to measure internuclear distances, is combined with three complementary <sup>13</sup>C–<sup>13</sup>C mixing schemes: dipolar-assisted rotational resonance, through-bond transfer-based double quantum/single quantum correlation, and radio frequency driven recoupling. These mixing schemes result in highly resolved carbon spectra with correlations that are created by different transfer mechanisms. We show that the helical part of the coat protein undergoes a uniform small (∼30°) amplitude motion, while the N-terminus is highly flexible. In addition, our results suggest that the reduced mobility of lysine sidechains at the C-terminus are a signature of binding to the single stranded DNA.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 9","pages":"3619–3628 3619–3628"},"PeriodicalIF":8.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00549","citationCount":"0","resultStr":"{\"title\":\"Dynamics in the Intact fd Bacteriophage Revealed by Pseudo 3D REDOR-Based Magic Angle Spinning NMR\",\"authors\":\"Orr Simon Lusky,&nbsp;Dvir Sherer and Amir Goldbourt*,&nbsp;\",\"doi\":\"10.1021/jacsau.4c0054910.1021/jacsau.4c00549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of robust NMR methodologies to probe dynamics on the atomic scale is vital to elucidate the close relations between structure, motion, and function in biological systems. Here, we present an automated protocol to measure, using magic-angle spinning NMR, the effective <sup>13</sup>C–<sup>15</sup>N dipolar coupling constants between multiple spin pairs simultaneously with high accuracy. We use the experimental dipolar coupling constants to quantify the order parameters of multiple C–N bonds in the thousands of identical copies of the coat protein in intact fd-Y21M filamentous bacteriophage virus and describe its overall dynamics on the submillisecond time scale. The method is based on combining three pseudo three-dimensional NMR experiments, where a rotational echo double resonance (REDOR) dephasing block, designed to measure internuclear distances, is combined with three complementary <sup>13</sup>C–<sup>13</sup>C mixing schemes: dipolar-assisted rotational resonance, through-bond transfer-based double quantum/single quantum correlation, and radio frequency driven recoupling. These mixing schemes result in highly resolved carbon spectra with correlations that are created by different transfer mechanisms. We show that the helical part of the coat protein undergoes a uniform small (∼30°) amplitude motion, while the N-terminus is highly flexible. In addition, our results suggest that the reduced mobility of lysine sidechains at the C-terminus are a signature of binding to the single stranded DNA.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"4 9\",\"pages\":\"3619–3628 3619–3628\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00549\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacsau.4c00549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发强大的核磁共振方法来探测原子尺度上的动力学,对于阐明生物系统中结构、运动和功能之间的密切关系至关重要。在这里,我们提出了一种自动化方案,利用魔角旋转 NMR 同时高精度测量多个自旋对之间的有效 13C-15N 双极耦合常数。我们利用实验得到的偶极耦合常数来量化完整的 fd-Y21M 丝状噬菌体病毒数千个相同拷贝的衣壳蛋白中多个 C-N 键的阶次参数,并描述其在亚毫秒级时间尺度上的整体动态。该方法基于三个伪三维核磁共振实验的结合,其中旋转回波双共振(REDOR)去相位块旨在测量核间距,与三个互补的 13C-13C 混合方案相结合:双极性辅助旋转共振、基于通键转移的双量子/单量子相关性和射频驱动的再耦合。这些混合方案产生了高分辨率的碳光谱,其相关性由不同的转移机制产生。我们的研究表明,衣壳蛋白的螺旋部分会发生均匀的小振幅(∼30°)运动,而 N 端则具有高度柔性。此外,我们的研究结果表明,C 端赖氨酸侧链移动性的降低是与单链 DNA 结合的标志。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamics in the Intact fd Bacteriophage Revealed by Pseudo 3D REDOR-Based Magic Angle Spinning NMR

Dynamics in the Intact fd Bacteriophage Revealed by Pseudo 3D REDOR-Based Magic Angle Spinning NMR

The development of robust NMR methodologies to probe dynamics on the atomic scale is vital to elucidate the close relations between structure, motion, and function in biological systems. Here, we present an automated protocol to measure, using magic-angle spinning NMR, the effective 13C–15N dipolar coupling constants between multiple spin pairs simultaneously with high accuracy. We use the experimental dipolar coupling constants to quantify the order parameters of multiple C–N bonds in the thousands of identical copies of the coat protein in intact fd-Y21M filamentous bacteriophage virus and describe its overall dynamics on the submillisecond time scale. The method is based on combining three pseudo three-dimensional NMR experiments, where a rotational echo double resonance (REDOR) dephasing block, designed to measure internuclear distances, is combined with three complementary 13C–13C mixing schemes: dipolar-assisted rotational resonance, through-bond transfer-based double quantum/single quantum correlation, and radio frequency driven recoupling. These mixing schemes result in highly resolved carbon spectra with correlations that are created by different transfer mechanisms. We show that the helical part of the coat protein undergoes a uniform small (∼30°) amplitude motion, while the N-terminus is highly flexible. In addition, our results suggest that the reduced mobility of lysine sidechains at the C-terminus are a signature of binding to the single stranded DNA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信