{"title":"结构畸变赋予纳米铜簇表面活性非配位位点以促进催化反应","authors":"Jing Sun, Qingyuan Wu, Xiaodan Yan, Lei Li, Xiongkai Tang, Xuekun Gong, Bingzheng Yan, Qinghua Xu, Qingxiang Guo, Jinlu He* and Hui Shen*, ","doi":"10.1021/jacsau.4c0057410.1021/jacsau.4c00574","DOIUrl":null,"url":null,"abstract":"<p >The utilization of structure distortion to modulate the electronic structure and alter catalytic properties of metallic nanomaterials is a well-established practice, but accurately identifying and comprehensively understanding these distortions present significant challenges. Ligand-stabilized metal nanoclusters with well-defined structures serve as exemplary model systems to illustrate the structure chemistry of nanomaterials, among which few studies have investigated nanocluster models that incorporate structural distortions. In this work, a novel copper hydride nanocluster, Cu<sub>42</sub>(PPh<sub>3</sub>)<sub>8</sub>(RS)<sub>4</sub>(CF<sub>3</sub>COO)<sub>10</sub>(CH<sub>3</sub>O)<sub>4</sub>H<sub>10</sub> (Cu<sub>42</sub>; PPh<sub>3</sub> is triphenylphosphine and RSH is 2,4-dichlorophenylthiol), with a highly twisted structure has been synthesized in a simple way. Structural analysis reveals Cu<sub>42</sub> comprises two Cu<sub>25</sub> units that are conjoined in a nearly orthogonal manner. The dramatic distortion in the metal framework, which is driven by multiple interactions from the surface ligands, endows the cluster with a rich array of uncoordinated metal sites on the surface. The resulting cluster, as envisioned, exhibits remarkable activity in catalyzing carbonylation of anilines. The findings from this study not only provides atomically precise insights into the structural distortions that are pertinent to nanoparticle catalysts but also underscores the potential of structurally distorted NCs as a burgeoning generation of catalysts with precise structures and outstanding performances that can be tailored for specific functions.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 9","pages":"3427–3435 3427–3435"},"PeriodicalIF":8.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00574","citationCount":"0","resultStr":"{\"title\":\"Structure Distortion Endows Copper Nanoclusters with Surface-Active Uncoordinated Sites for Boosting Catalysis\",\"authors\":\"Jing Sun, Qingyuan Wu, Xiaodan Yan, Lei Li, Xiongkai Tang, Xuekun Gong, Bingzheng Yan, Qinghua Xu, Qingxiang Guo, Jinlu He* and Hui Shen*, \",\"doi\":\"10.1021/jacsau.4c0057410.1021/jacsau.4c00574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The utilization of structure distortion to modulate the electronic structure and alter catalytic properties of metallic nanomaterials is a well-established practice, but accurately identifying and comprehensively understanding these distortions present significant challenges. Ligand-stabilized metal nanoclusters with well-defined structures serve as exemplary model systems to illustrate the structure chemistry of nanomaterials, among which few studies have investigated nanocluster models that incorporate structural distortions. In this work, a novel copper hydride nanocluster, Cu<sub>42</sub>(PPh<sub>3</sub>)<sub>8</sub>(RS)<sub>4</sub>(CF<sub>3</sub>COO)<sub>10</sub>(CH<sub>3</sub>O)<sub>4</sub>H<sub>10</sub> (Cu<sub>42</sub>; PPh<sub>3</sub> is triphenylphosphine and RSH is 2,4-dichlorophenylthiol), with a highly twisted structure has been synthesized in a simple way. Structural analysis reveals Cu<sub>42</sub> comprises two Cu<sub>25</sub> units that are conjoined in a nearly orthogonal manner. The dramatic distortion in the metal framework, which is driven by multiple interactions from the surface ligands, endows the cluster with a rich array of uncoordinated metal sites on the surface. The resulting cluster, as envisioned, exhibits remarkable activity in catalyzing carbonylation of anilines. The findings from this study not only provides atomically precise insights into the structural distortions that are pertinent to nanoparticle catalysts but also underscores the potential of structurally distorted NCs as a burgeoning generation of catalysts with precise structures and outstanding performances that can be tailored for specific functions.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"4 9\",\"pages\":\"3427–3435 3427–3435\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00574\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacsau.4c00574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Structure Distortion Endows Copper Nanoclusters with Surface-Active Uncoordinated Sites for Boosting Catalysis
The utilization of structure distortion to modulate the electronic structure and alter catalytic properties of metallic nanomaterials is a well-established practice, but accurately identifying and comprehensively understanding these distortions present significant challenges. Ligand-stabilized metal nanoclusters with well-defined structures serve as exemplary model systems to illustrate the structure chemistry of nanomaterials, among which few studies have investigated nanocluster models that incorporate structural distortions. In this work, a novel copper hydride nanocluster, Cu42(PPh3)8(RS)4(CF3COO)10(CH3O)4H10 (Cu42; PPh3 is triphenylphosphine and RSH is 2,4-dichlorophenylthiol), with a highly twisted structure has been synthesized in a simple way. Structural analysis reveals Cu42 comprises two Cu25 units that are conjoined in a nearly orthogonal manner. The dramatic distortion in the metal framework, which is driven by multiple interactions from the surface ligands, endows the cluster with a rich array of uncoordinated metal sites on the surface. The resulting cluster, as envisioned, exhibits remarkable activity in catalyzing carbonylation of anilines. The findings from this study not only provides atomically precise insights into the structural distortions that are pertinent to nanoparticle catalysts but also underscores the potential of structurally distorted NCs as a burgeoning generation of catalysts with precise structures and outstanding performances that can be tailored for specific functions.