Charles Roques-Carmes, Shanhui Fan, David A. B. Miller
{"title":"利用自配置光学器件测量、处理和生成部分相干光","authors":"Charles Roques-Carmes, Shanhui Fan, David A. B. Miller","doi":"10.1038/s41377-024-01622-y","DOIUrl":null,"url":null,"abstract":"<p>Optical phenomena always display some degree of partial coherence between their respective degrees of freedom. Partial coherence is of particular interest in multimodal systems, where classical and quantum correlations between spatial, polarization, and spectral degrees of freedom can lead to fascinating phenomena (e.g., entanglement) and be leveraged for advanced imaging and sensing modalities (e.g., in hyperspectral, polarization, and ghost imaging). Here, we present a universal method to analyze, process, and generate spatially partially coherent light in multimode systems by using self-configuring optical networks. Our method relies on cascaded self-configuring layers whose average power outputs are sequentially optimized. Once optimized, the network separates the input light into its mutually incoherent components, which is formally equivalent to a diagonalization of the input density matrix. We illustrate our method with numerical simulations of Mach-Zehnder interferometer arrays and show how this method can be used to perform partially coherent environmental light sensing, generation of multimode partially coherent light with arbitrary coherency matrices, and unscrambling of quantum optical mixtures. We provide guidelines for the experimental realization of this method, including the influence of losses, paving the way for self-configuring photonic devices that can automatically learn optimal modal representations of partially coherent light fields.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring, processing, and generating partially coherent light with self-configuring optics\",\"authors\":\"Charles Roques-Carmes, Shanhui Fan, David A. B. Miller\",\"doi\":\"10.1038/s41377-024-01622-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optical phenomena always display some degree of partial coherence between their respective degrees of freedom. Partial coherence is of particular interest in multimodal systems, where classical and quantum correlations between spatial, polarization, and spectral degrees of freedom can lead to fascinating phenomena (e.g., entanglement) and be leveraged for advanced imaging and sensing modalities (e.g., in hyperspectral, polarization, and ghost imaging). Here, we present a universal method to analyze, process, and generate spatially partially coherent light in multimode systems by using self-configuring optical networks. Our method relies on cascaded self-configuring layers whose average power outputs are sequentially optimized. Once optimized, the network separates the input light into its mutually incoherent components, which is formally equivalent to a diagonalization of the input density matrix. We illustrate our method with numerical simulations of Mach-Zehnder interferometer arrays and show how this method can be used to perform partially coherent environmental light sensing, generation of multimode partially coherent light with arbitrary coherency matrices, and unscrambling of quantum optical mixtures. We provide guidelines for the experimental realization of this method, including the influence of losses, paving the way for self-configuring photonic devices that can automatically learn optimal modal representations of partially coherent light fields.</p>\",\"PeriodicalId\":20,\"journal\":{\"name\":\"ACS Medicinal Chemistry Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Medicinal Chemistry Letters\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01622-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01622-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Measuring, processing, and generating partially coherent light with self-configuring optics
Optical phenomena always display some degree of partial coherence between their respective degrees of freedom. Partial coherence is of particular interest in multimodal systems, where classical and quantum correlations between spatial, polarization, and spectral degrees of freedom can lead to fascinating phenomena (e.g., entanglement) and be leveraged for advanced imaging and sensing modalities (e.g., in hyperspectral, polarization, and ghost imaging). Here, we present a universal method to analyze, process, and generate spatially partially coherent light in multimode systems by using self-configuring optical networks. Our method relies on cascaded self-configuring layers whose average power outputs are sequentially optimized. Once optimized, the network separates the input light into its mutually incoherent components, which is formally equivalent to a diagonalization of the input density matrix. We illustrate our method with numerical simulations of Mach-Zehnder interferometer arrays and show how this method can be used to perform partially coherent environmental light sensing, generation of multimode partially coherent light with arbitrary coherency matrices, and unscrambling of quantum optical mixtures. We provide guidelines for the experimental realization of this method, including the influence of losses, paving the way for self-configuring photonic devices that can automatically learn optimal modal representations of partially coherent light fields.
期刊介绍:
ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to:
Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics)
Biological characterization of new molecular entities in the context of drug discovery
Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc.
Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry
Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources
Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response
Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic
Mechanistic drug metabolism and regulation of metabolic enzyme gene expression
Chemistry patents relevant to the medicinal chemistry field.