Tiago D. da Silva, Julia C. Mullarney, Conrad A. Pilditch, Giovanni Coco
{"title":"短叶海草草甸植被斑块与潮汐流之间的相互作用","authors":"Tiago D. da Silva, Julia C. Mullarney, Conrad A. Pilditch, Giovanni Coco","doi":"10.1002/lno.12679","DOIUrl":null,"url":null,"abstract":"<p>Seagrasses are critical coastal habitats that provide numerous ecosystem services. The inherent patchiness within meadows exerts a significant influence on the flow-vegetation interaction, which, in turn, affects the array of services provided by these environments. We present field observations of vegetation distribution and hydrodynamic measurements within and surrounding an approximately 2 m diameter gap (bare sediment) in a fragmented seagrass meadow. We show that variability in mean flows and turbulence is correlated with meadow structure at small (O (10<sup>0</sup> m)) and large (O (10<sup>2</sup> m)) spatial scales. Our observations reveal that bare gaps within seagrass meadows lead to faster flows and lower bed elevations. Despite slower flow speeds above the dense seagrass adjacent to the gap, the rates of dissipation of turbulent energy above the vegetation are typically around an order of magnitude larger than above the bare bed. Associated with this enhanced dissipation of turbulent energy, we observed a dominance of down-deceleration events promoting fluid exchange and mixing and driving mass flux into the canopy. Analysis of directional variograms demonstrates that the major continuity axis within NDVI (normalized difference vegetation index) imagery (used as a proxy for vegetation biomass) coincides with the major axis of flow on both gap and meadow scales. Conversely, along the axis of minor flow variance, vegetation remains dense and exhibits greater uniformity. These findings indicate a feedback mechanism between seagrass meadow patchiness and spatial structure through flow modification, which may be beneficial for plant development.</p>","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lno.12679","citationCount":"0","resultStr":"{\"title\":\"The interaction between vegetation patchiness and tidal flows in a shortleaf seagrass meadow\",\"authors\":\"Tiago D. da Silva, Julia C. Mullarney, Conrad A. Pilditch, Giovanni Coco\",\"doi\":\"10.1002/lno.12679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Seagrasses are critical coastal habitats that provide numerous ecosystem services. The inherent patchiness within meadows exerts a significant influence on the flow-vegetation interaction, which, in turn, affects the array of services provided by these environments. We present field observations of vegetation distribution and hydrodynamic measurements within and surrounding an approximately 2 m diameter gap (bare sediment) in a fragmented seagrass meadow. We show that variability in mean flows and turbulence is correlated with meadow structure at small (O (10<sup>0</sup> m)) and large (O (10<sup>2</sup> m)) spatial scales. Our observations reveal that bare gaps within seagrass meadows lead to faster flows and lower bed elevations. Despite slower flow speeds above the dense seagrass adjacent to the gap, the rates of dissipation of turbulent energy above the vegetation are typically around an order of magnitude larger than above the bare bed. Associated with this enhanced dissipation of turbulent energy, we observed a dominance of down-deceleration events promoting fluid exchange and mixing and driving mass flux into the canopy. Analysis of directional variograms demonstrates that the major continuity axis within NDVI (normalized difference vegetation index) imagery (used as a proxy for vegetation biomass) coincides with the major axis of flow on both gap and meadow scales. Conversely, along the axis of minor flow variance, vegetation remains dense and exhibits greater uniformity. These findings indicate a feedback mechanism between seagrass meadow patchiness and spatial structure through flow modification, which may be beneficial for plant development.</p>\",\"PeriodicalId\":18143,\"journal\":{\"name\":\"Limnology and Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lno.12679\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lno.12679\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lno.12679","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
The interaction between vegetation patchiness and tidal flows in a shortleaf seagrass meadow
Seagrasses are critical coastal habitats that provide numerous ecosystem services. The inherent patchiness within meadows exerts a significant influence on the flow-vegetation interaction, which, in turn, affects the array of services provided by these environments. We present field observations of vegetation distribution and hydrodynamic measurements within and surrounding an approximately 2 m diameter gap (bare sediment) in a fragmented seagrass meadow. We show that variability in mean flows and turbulence is correlated with meadow structure at small (O (100 m)) and large (O (102 m)) spatial scales. Our observations reveal that bare gaps within seagrass meadows lead to faster flows and lower bed elevations. Despite slower flow speeds above the dense seagrass adjacent to the gap, the rates of dissipation of turbulent energy above the vegetation are typically around an order of magnitude larger than above the bare bed. Associated with this enhanced dissipation of turbulent energy, we observed a dominance of down-deceleration events promoting fluid exchange and mixing and driving mass flux into the canopy. Analysis of directional variograms demonstrates that the major continuity axis within NDVI (normalized difference vegetation index) imagery (used as a proxy for vegetation biomass) coincides with the major axis of flow on both gap and meadow scales. Conversely, along the axis of minor flow variance, vegetation remains dense and exhibits greater uniformity. These findings indicate a feedback mechanism between seagrass meadow patchiness and spatial structure through flow modification, which may be beneficial for plant development.
期刊介绍:
Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.