{"title":"用于宽温度范围内高性能锂-二氧化碳电池的光激发 MoS2/CNT 阴极。","authors":"Tingsong Hu, Wenyi Lian, Kang Hu, Qiuju Li, Xueliang Cui, Tengyu Yao, Laifa Shen","doi":"10.1007/s40820-024-01506-1","DOIUrl":null,"url":null,"abstract":"<div><p>Li–CO<sub>2</sub> batteries are considered promising energy storage systems in extreme environments such as Mars; however, severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics. Herein, a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO<sub>2</sub> battery was achieved with a binder-free MoS<sub>2</sub>/carbon nanotube (CNT) photo-electrode as cathode. The unique layered structure and excellent photoelectric properties of MoS<sub>2</sub> facilitate the abundant generation and rapid transfer of photo-excited carriers, which accelerate the CO<sub>2</sub> reduction and Li<sub>2</sub>CO<sub>3</sub> decomposition upon illumination. The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V, attaining superior energy efficiency of 90.2% and excellent cycling stability of over 120 cycles. Even at an extremely low temperature of − 30 °C, the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS<sub>2</sub>/CNT cathode. This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO<sub>2</sub> battery in addressing the obstacle of charge overpotential and energy efficiency.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01506-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Photo-Energized MoS2/CNT Cathode for High-Performance Li–CO2 Batteries in a Wide-Temperature Range\",\"authors\":\"Tingsong Hu, Wenyi Lian, Kang Hu, Qiuju Li, Xueliang Cui, Tengyu Yao, Laifa Shen\",\"doi\":\"10.1007/s40820-024-01506-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Li–CO<sub>2</sub> batteries are considered promising energy storage systems in extreme environments such as Mars; however, severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics. Herein, a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO<sub>2</sub> battery was achieved with a binder-free MoS<sub>2</sub>/carbon nanotube (CNT) photo-electrode as cathode. The unique layered structure and excellent photoelectric properties of MoS<sub>2</sub> facilitate the abundant generation and rapid transfer of photo-excited carriers, which accelerate the CO<sub>2</sub> reduction and Li<sub>2</sub>CO<sub>3</sub> decomposition upon illumination. The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V, attaining superior energy efficiency of 90.2% and excellent cycling stability of over 120 cycles. Even at an extremely low temperature of − 30 °C, the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS<sub>2</sub>/CNT cathode. This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO<sub>2</sub> battery in addressing the obstacle of charge overpotential and energy efficiency.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-024-01506-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-024-01506-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01506-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Photo-Energized MoS2/CNT Cathode for High-Performance Li–CO2 Batteries in a Wide-Temperature Range
Li–CO2 batteries are considered promising energy storage systems in extreme environments such as Mars; however, severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics. Herein, a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO2 battery was achieved with a binder-free MoS2/carbon nanotube (CNT) photo-electrode as cathode. The unique layered structure and excellent photoelectric properties of MoS2 facilitate the abundant generation and rapid transfer of photo-excited carriers, which accelerate the CO2 reduction and Li2CO3 decomposition upon illumination. The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V, attaining superior energy efficiency of 90.2% and excellent cycling stability of over 120 cycles. Even at an extremely low temperature of − 30 °C, the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS2/CNT cathode. This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO2 battery in addressing the obstacle of charge overpotential and energy efficiency.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.