{"title":"长读测序确定了 ADPKD 中的 PKD1 基因转换,而非 WES 和 MLPA 所显示的假阳性外显子缺失","authors":"Xueping Qiu, Xin Jin, Jin Li, Yuanzhen Zhang, Jianhong Ma, Fang Zheng","doi":"10.1155/2024/7225526","DOIUrl":null,"url":null,"abstract":"<p>Whole exome sequencing (WES) has become an increasingly common technique for identifying the genetic cause of Mendelian genetic diseases. However, it may fail to detect the complex regions of the genome. Here, we investigated the genetic etiology of a pedigree with autosomal dominant polycystic kidney disease (ADPKD) using a combination of WES, multiplex ligation-dependent probe amplification (MLPA), Sanger sequencing, and long-read sequencing (LRS). Initially, WES of the proband revealed a heterozygous variant c.7391G>C in <i>PKD1</i> Exon 18, along with a heterozygous deletion of the 17th and 18th exons of <i>PKD1</i> detected by exome-based copy number variation (CNV) analysis. MLPA confirmed the <i>PKD1</i> heterozygous deletion of Exon 18. Except for c.7391G>C, Sanger sequencing identified four other heterozygous variants (c.7278T>C, c.7288C>T, c.7344C>G, and c.7365C>T) in Exon 18 of <i>PKD1</i>. Subsequently, LRS uncovered seven clustered substitution variants (c.7209+28C>T, c.7210-16C>T, c.7278T>C, c.7288C>T, c.7344C>G, c.7365C>T, and c.7391G>C), with six of them omitted by WES due to interference from <i>PKD1</i> pseudogenes. Combining LRS results with cosegregation of the pedigree analysis, we found these variants were in <i>cis</i> and converted from <i>PKD1</i> pseudogenes, covering a region of at least 282 bp. Notably, the paralogous sequence variants of c.7288C>T introduced a premature stop codon of <i>PKD1</i>, leading to a function loss, and were classified as pathogenic (PVS1+PS4+PM2) according to the ACMG/AMP guideline. Our study highlights the limitations of WES/MLPA and the importance of utilizing complementary tools like LRS for comprehensive variant detection in <i>PKD1</i>.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":"2024 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7225526","citationCount":"0","resultStr":"{\"title\":\"Long-Read Sequencing Identified a PKD1 Gene Conversion in ADPKD Rather Than the False-Positive Exon Deletion Indicated by WES and MLPA\",\"authors\":\"Xueping Qiu, Xin Jin, Jin Li, Yuanzhen Zhang, Jianhong Ma, Fang Zheng\",\"doi\":\"10.1155/2024/7225526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Whole exome sequencing (WES) has become an increasingly common technique for identifying the genetic cause of Mendelian genetic diseases. However, it may fail to detect the complex regions of the genome. Here, we investigated the genetic etiology of a pedigree with autosomal dominant polycystic kidney disease (ADPKD) using a combination of WES, multiplex ligation-dependent probe amplification (MLPA), Sanger sequencing, and long-read sequencing (LRS). Initially, WES of the proband revealed a heterozygous variant c.7391G>C in <i>PKD1</i> Exon 18, along with a heterozygous deletion of the 17th and 18th exons of <i>PKD1</i> detected by exome-based copy number variation (CNV) analysis. MLPA confirmed the <i>PKD1</i> heterozygous deletion of Exon 18. Except for c.7391G>C, Sanger sequencing identified four other heterozygous variants (c.7278T>C, c.7288C>T, c.7344C>G, and c.7365C>T) in Exon 18 of <i>PKD1</i>. Subsequently, LRS uncovered seven clustered substitution variants (c.7209+28C>T, c.7210-16C>T, c.7278T>C, c.7288C>T, c.7344C>G, c.7365C>T, and c.7391G>C), with six of them omitted by WES due to interference from <i>PKD1</i> pseudogenes. Combining LRS results with cosegregation of the pedigree analysis, we found these variants were in <i>cis</i> and converted from <i>PKD1</i> pseudogenes, covering a region of at least 282 bp. Notably, the paralogous sequence variants of c.7288C>T introduced a premature stop codon of <i>PKD1</i>, leading to a function loss, and were classified as pathogenic (PVS1+PS4+PM2) according to the ACMG/AMP guideline. Our study highlights the limitations of WES/MLPA and the importance of utilizing complementary tools like LRS for comprehensive variant detection in <i>PKD1</i>.</p>\",\"PeriodicalId\":13061,\"journal\":{\"name\":\"Human Mutation\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7225526\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Mutation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/7225526\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Mutation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7225526","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Long-Read Sequencing Identified a PKD1 Gene Conversion in ADPKD Rather Than the False-Positive Exon Deletion Indicated by WES and MLPA
Whole exome sequencing (WES) has become an increasingly common technique for identifying the genetic cause of Mendelian genetic diseases. However, it may fail to detect the complex regions of the genome. Here, we investigated the genetic etiology of a pedigree with autosomal dominant polycystic kidney disease (ADPKD) using a combination of WES, multiplex ligation-dependent probe amplification (MLPA), Sanger sequencing, and long-read sequencing (LRS). Initially, WES of the proband revealed a heterozygous variant c.7391G>C in PKD1 Exon 18, along with a heterozygous deletion of the 17th and 18th exons of PKD1 detected by exome-based copy number variation (CNV) analysis. MLPA confirmed the PKD1 heterozygous deletion of Exon 18. Except for c.7391G>C, Sanger sequencing identified four other heterozygous variants (c.7278T>C, c.7288C>T, c.7344C>G, and c.7365C>T) in Exon 18 of PKD1. Subsequently, LRS uncovered seven clustered substitution variants (c.7209+28C>T, c.7210-16C>T, c.7278T>C, c.7288C>T, c.7344C>G, c.7365C>T, and c.7391G>C), with six of them omitted by WES due to interference from PKD1 pseudogenes. Combining LRS results with cosegregation of the pedigree analysis, we found these variants were in cis and converted from PKD1 pseudogenes, covering a region of at least 282 bp. Notably, the paralogous sequence variants of c.7288C>T introduced a premature stop codon of PKD1, leading to a function loss, and were classified as pathogenic (PVS1+PS4+PM2) according to the ACMG/AMP guideline. Our study highlights the limitations of WES/MLPA and the importance of utilizing complementary tools like LRS for comprehensive variant detection in PKD1.
期刊介绍:
Human Mutation is a peer-reviewed journal that offers publication of original Research Articles, Methods, Mutation Updates, Reviews, Database Articles, Rapid Communications, and Letters on broad aspects of mutation research in humans. Reports of novel DNA variations and their phenotypic consequences, reports of SNPs demonstrated as valuable for genomic analysis, descriptions of new molecular detection methods, and novel approaches to clinical diagnosis are welcomed. Novel reports of gene organization at the genomic level, reported in the context of mutation investigation, may be considered. The journal provides a unique forum for the exchange of ideas, methods, and applications of interest to molecular, human, and medical geneticists in academic, industrial, and clinical research settings worldwide.