{"title":"用于传感器网络中三维稀疏阵列 DOA 估计的带有 Nystrom 近似值的单元根-MUSIC 方法","authors":"Veerendra D;Miguel Villagomez-Galindo;Ana Beatriz Martínez Valencia;Niranjan KR;Arora Jasmineet Kaur;Upendra Kumar Potnuru;Jasgurpreet Singh Chohan;Bade Venkata Suresh;Sudhanshu Maurya","doi":"10.1109/LSENS.2024.3451723","DOIUrl":null,"url":null,"abstract":"This letter addresses the challenge of efficient direction of arrival (DOA) estimation in 3-D sparse arrays, crucial for applications, such as radar and wireless communication systems. We introduce a novel methodology that combines the Nystrom approximation with the unitary root-multiple signal classification (MUSIC) algorithm to precisely estimate DOAs while significantly reducing computational complexity. Our approach strategically selects a subset of sensors using the Nystrom approximation, resulting in a notable decrease in simulation time compared to conventional methods, such as Root-MUSIC and MR-ESPRIT. Extensive simulations validate the efficacy of our method, demonstrating a reduction of up to 39% in simulation time with a sensor subset size of 20. This technique, which enhances efficiency, has the potential to transform DOA estimation in 3-D sparse arrays, making it suitable for real-world applications that demand rapid and accurate signal processing.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unitary Root-MUSIC Method With Nystrom Approximation for 3-D Sparse Array DOA Estimation in Sensor Networks\",\"authors\":\"Veerendra D;Miguel Villagomez-Galindo;Ana Beatriz Martínez Valencia;Niranjan KR;Arora Jasmineet Kaur;Upendra Kumar Potnuru;Jasgurpreet Singh Chohan;Bade Venkata Suresh;Sudhanshu Maurya\",\"doi\":\"10.1109/LSENS.2024.3451723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter addresses the challenge of efficient direction of arrival (DOA) estimation in 3-D sparse arrays, crucial for applications, such as radar and wireless communication systems. We introduce a novel methodology that combines the Nystrom approximation with the unitary root-multiple signal classification (MUSIC) algorithm to precisely estimate DOAs while significantly reducing computational complexity. Our approach strategically selects a subset of sensors using the Nystrom approximation, resulting in a notable decrease in simulation time compared to conventional methods, such as Root-MUSIC and MR-ESPRIT. Extensive simulations validate the efficacy of our method, demonstrating a reduction of up to 39% in simulation time with a sensor subset size of 20. This technique, which enhances efficiency, has the potential to transform DOA estimation in 3-D sparse arrays, making it suitable for real-world applications that demand rapid and accurate signal processing.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 10\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10659128/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10659128/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Unitary Root-MUSIC Method With Nystrom Approximation for 3-D Sparse Array DOA Estimation in Sensor Networks
This letter addresses the challenge of efficient direction of arrival (DOA) estimation in 3-D sparse arrays, crucial for applications, such as radar and wireless communication systems. We introduce a novel methodology that combines the Nystrom approximation with the unitary root-multiple signal classification (MUSIC) algorithm to precisely estimate DOAs while significantly reducing computational complexity. Our approach strategically selects a subset of sensors using the Nystrom approximation, resulting in a notable decrease in simulation time compared to conventional methods, such as Root-MUSIC and MR-ESPRIT. Extensive simulations validate the efficacy of our method, demonstrating a reduction of up to 39% in simulation time with a sensor subset size of 20. This technique, which enhances efficiency, has the potential to transform DOA estimation in 3-D sparse arrays, making it suitable for real-world applications that demand rapid and accurate signal processing.