高阶微分算子的相对 K 同调

IF 1.7 2区 数学 Q1 MATHEMATICS
Magnus Fries
{"title":"高阶微分算子的相对 K 同调","authors":"Magnus Fries","doi":"10.1016/j.jfa.2024.110678","DOIUrl":null,"url":null,"abstract":"<div><p>We extend the notion of a spectral triple to that of a higher-order relative spectral triple, which accommodates several types of hypoelliptic differential operators on manifolds with boundary. The bounded transform of a higher-order relative spectral triple gives rise to a relative <em>K</em>-homology cycle. In the case of an elliptic differential operator on a compact smooth manifold with boundary, we calculate the <em>K</em>-homology boundary map of the constructed relative <em>K</em>-homology cycle to obtain a generalization of the Baum-Douglas-Taylor index theorem.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110678"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003665/pdfft?md5=e36d9b99bb0991b52d9d9a26d8663803&pid=1-s2.0-S0022123624003665-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Relative K-homology of higher-order differential operators\",\"authors\":\"Magnus Fries\",\"doi\":\"10.1016/j.jfa.2024.110678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We extend the notion of a spectral triple to that of a higher-order relative spectral triple, which accommodates several types of hypoelliptic differential operators on manifolds with boundary. The bounded transform of a higher-order relative spectral triple gives rise to a relative <em>K</em>-homology cycle. In the case of an elliptic differential operator on a compact smooth manifold with boundary, we calculate the <em>K</em>-homology boundary map of the constructed relative <em>K</em>-homology cycle to obtain a generalization of the Baum-Douglas-Taylor index theorem.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 1\",\"pages\":\"Article 110678\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003665/pdfft?md5=e36d9b99bb0991b52d9d9a26d8663803&pid=1-s2.0-S0022123624003665-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003665\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003665","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们将谱三重的概念扩展为高阶相对谱三重的概念,它容纳了有边界流形上的几类次椭圆微分算子。高阶相对谱三重的有界变换产生了一个相对 K-共生周期。在有边界的紧凑光滑流形上的椭圆微分算子的情况下,我们计算所构建的相对 K-组学循环的 K-组学边界映射,从而得到 Baum-Douglas-Taylor 指数定理的广义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative K-homology of higher-order differential operators

We extend the notion of a spectral triple to that of a higher-order relative spectral triple, which accommodates several types of hypoelliptic differential operators on manifolds with boundary. The bounded transform of a higher-order relative spectral triple gives rise to a relative K-homology cycle. In the case of an elliptic differential operator on a compact smooth manifold with boundary, we calculate the K-homology boundary map of the constructed relative K-homology cycle to obtain a generalization of the Baum-Douglas-Taylor index theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信