具有逐FCE结构的空间的高指数理论

IF 1.7 2区 数学 Q1 MATHEMATICS
Jintao Deng , Liang Guo , Qin Wang , Guoliang Yu
{"title":"具有逐FCE结构的空间的高指数理论","authors":"Jintao Deng ,&nbsp;Liang Guo ,&nbsp;Qin Wang ,&nbsp;Guoliang Yu","doi":"10.1016/j.jfa.2024.110679","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msub><mrow><mo>(</mo><mn>1</mn><mo>→</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> be a sequence of extensions of finite groups. Assume that the coarse disjoint unions of <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span>, <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> have bounded geometry. The sequence <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> is said to have an <em>FCE-by-FCE structure</em>, if the sequence <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> and the sequence <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> admit <em>a fibred coarse embedding</em> into Hilbert space. In this paper, we prove the coarse Novikov conjecture holds for the sequence <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> with an FCE-by-FCE structure.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher index theory for spaces with an FCE-by-FCE structure\",\"authors\":\"Jintao Deng ,&nbsp;Liang Guo ,&nbsp;Qin Wang ,&nbsp;Guoliang Yu\",\"doi\":\"10.1016/j.jfa.2024.110679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><msub><mrow><mo>(</mo><mn>1</mn><mo>→</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> be a sequence of extensions of finite groups. Assume that the coarse disjoint unions of <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span>, <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> have bounded geometry. The sequence <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> is said to have an <em>FCE-by-FCE structure</em>, if the sequence <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> and the sequence <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> admit <em>a fibred coarse embedding</em> into Hilbert space. In this paper, we prove the coarse Novikov conjecture holds for the sequence <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> with an FCE-by-FCE structure.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003677\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003677","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设(1→Nn→Gn→Qn→1)n∈N 是有限群的扩展序列。假设 (Nn)n∈N、(Gn)n∈N 和 (Qn)n∈N 的粗糙不相接的联合具有有界几何。如果序列(Nn)n∈N 和序列(Qn)n∈N 允许纤维粗嵌入到希尔伯特空间,则称序列(Gn)n∈N 具有 FCE-by-FCE 结构。本文证明了具有 FCE-by-FCE 结构的序列 (Gn)n∈N 的粗诺维科夫猜想成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher index theory for spaces with an FCE-by-FCE structure

Let (1NnGnQn1)nN be a sequence of extensions of finite groups. Assume that the coarse disjoint unions of (Nn)nN, (Gn)nN and (Qn)nN have bounded geometry. The sequence (Gn)nN is said to have an FCE-by-FCE structure, if the sequence (Nn)nN and the sequence (Qn)nN admit a fibred coarse embedding into Hilbert space. In this paper, we prove the coarse Novikov conjecture holds for the sequence (Gn)nN with an FCE-by-FCE structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信