粗糙随机偏微分方程的可积分约束及其在不变流形和稳定性方面的应用

IF 1.7 2区 数学 Q1 MATHEMATICS
M. Ghani Varzaneh, S. Riedel
{"title":"粗糙随机偏微分方程的可积分约束及其在不变流形和稳定性方面的应用","authors":"M. Ghani Varzaneh,&nbsp;S. Riedel","doi":"10.1016/j.jfa.2024.110676","DOIUrl":null,"url":null,"abstract":"<div><p>We study semilinear rough stochastic partial differential equations as introduced in Gerasimovičs and Hairer (2019) <span><span>[31]</span></span>. We provide <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>-integrable a priori bounds for the solution and its linearization in case the equation is driven by a suitable Gaussian process. Using the multiplicative ergodic theorem for Banach spaces, we can deduce the existence of a Lyapunov spectrum for the linearized equation around stationary points. The existence of local stable, unstable, and center manifolds around stationary points is provided. In the case where all Lyapunov exponents are negative, local exponential stability can be deduced. We illustrate our findings with several examples.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003641/pdfft?md5=b80218becb1906e603d5ede602597273&pid=1-s2.0-S0022123624003641-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An integrable bound for rough stochastic partial differential equations with applications to invariant manifolds and stability\",\"authors\":\"M. Ghani Varzaneh,&nbsp;S. Riedel\",\"doi\":\"10.1016/j.jfa.2024.110676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study semilinear rough stochastic partial differential equations as introduced in Gerasimovičs and Hairer (2019) <span><span>[31]</span></span>. We provide <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>-integrable a priori bounds for the solution and its linearization in case the equation is driven by a suitable Gaussian process. Using the multiplicative ergodic theorem for Banach spaces, we can deduce the existence of a Lyapunov spectrum for the linearized equation around stationary points. The existence of local stable, unstable, and center manifolds around stationary points is provided. In the case where all Lyapunov exponents are negative, local exponential stability can be deduced. We illustrate our findings with several examples.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003641/pdfft?md5=b80218becb1906e603d5ede602597273&pid=1-s2.0-S0022123624003641-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003641\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003641","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是 Gerasimovičs 和 Hairer (2019) [31] 中引入的半线性粗糙随机偏微分方程。我们为方程由合适的高斯过程驱动时的解及其线性化提供了 Lp(Ω)-integrable 先验边界。利用巴拿赫空间的乘法遍历定理,我们可以推导出线性化方程在静止点附近存在李亚普诺夫谱。我们还提供了静止点周围存在的局部稳定流形、不稳定流形和中心流形。在所有 Lyapunov 指数都为负的情况下,可以推导出局部指数稳定性。我们用几个例子来说明我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An integrable bound for rough stochastic partial differential equations with applications to invariant manifolds and stability

We study semilinear rough stochastic partial differential equations as introduced in Gerasimovičs and Hairer (2019) [31]. We provide Lp(Ω)-integrable a priori bounds for the solution and its linearization in case the equation is driven by a suitable Gaussian process. Using the multiplicative ergodic theorem for Banach spaces, we can deduce the existence of a Lyapunov spectrum for the linearized equation around stationary points. The existence of local stable, unstable, and center manifolds around stationary points is provided. In the case where all Lyapunov exponents are negative, local exponential stability can be deduced. We illustrate our findings with several examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信