粗糙域中正则性和泊松正则性问题的可解性外推法

IF 1.7 2区 数学 Q1 MATHEMATICS
Josep M. Gallegos , Mihalis Mourgoglou , Xavier Tolsa
{"title":"粗糙域中正则性和泊松正则性问题的可解性外推法","authors":"Josep M. Gallegos ,&nbsp;Mihalis Mourgoglou ,&nbsp;Xavier Tolsa","doi":"10.1016/j.jfa.2024.110672","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, be an open set satisfying the corkscrew condition with <em>n</em>-Ahlfors regular boundary ∂Ω, but without any connectivity assumption. We study the connection between solvability of the regularity problem for divergence form elliptic operators with boundary data in the Hajłasz-Sobolev space <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> and the weak-<span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> property of the associated elliptic measure. In particular, we show that solvability of the regularity problem in <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> is equivalent to the solvability of the regularity problem in <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> for some <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span>. We also prove analogous extrapolation results for the Poisson regularity problem defined on tent spaces. Moreover, under the hypothesis that ∂Ω supports a weak <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-Poincaré inequality, we show that the solvability of the regularity problem in the Hajłasz-Sobolev space <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> is equivalent to a stronger solvability in a Hardy-Sobolev space of tangential derivatives.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110672"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003604/pdfft?md5=559d2fce88142d22708d8e9a462e2ff0&pid=1-s2.0-S0022123624003604-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Extrapolation of solvability of the regularity and the Poisson regularity problems in rough domains\",\"authors\":\"Josep M. Gallegos ,&nbsp;Mihalis Mourgoglou ,&nbsp;Xavier Tolsa\",\"doi\":\"10.1016/j.jfa.2024.110672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, be an open set satisfying the corkscrew condition with <em>n</em>-Ahlfors regular boundary ∂Ω, but without any connectivity assumption. We study the connection between solvability of the regularity problem for divergence form elliptic operators with boundary data in the Hajłasz-Sobolev space <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> and the weak-<span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> property of the associated elliptic measure. In particular, we show that solvability of the regularity problem in <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> is equivalent to the solvability of the regularity problem in <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> for some <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span>. We also prove analogous extrapolation results for the Poisson regularity problem defined on tent spaces. Moreover, under the hypothesis that ∂Ω supports a weak <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-Poincaré inequality, we show that the solvability of the regularity problem in the Hajłasz-Sobolev space <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> is equivalent to a stronger solvability in a Hardy-Sobolev space of tangential derivatives.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 1\",\"pages\":\"Article 110672\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003604/pdfft?md5=559d2fce88142d22708d8e9a462e2ff0&pid=1-s2.0-S0022123624003604-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003604\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003604","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设Ω⊂Rn+1, n≥2 是满足开方条件的开放集,具有 n-Ahlfors 正则边界∂Ω,但没有任何连通性假设。我们研究了在 Hajłasz-Sobolev 空间 M1,1(∂Ω) 中具有边界数据的发散形式椭圆算子正则性问题的可解性与相关椭圆度量的弱 A∞ 特性之间的联系。我们特别证明了 M1,1(∂Ω) 中的正则性问题的可解性等同于对于某个 p>1 的 M1,p(∂Ω) 中的正则性问题的可解性。 我们还证明了定义在帐篷空间上的泊松正则性问题的类似外推法结果。此外,在 ∂Ω 支持弱 (1,1)-Poincaré 不等式的假设下,我们证明了正则性问题在 Hajłasz-Sobolev 空间 M1,1(∂Ω) 中的可解性等同于切向导数的 Hardy-Sobolev 空间中更强的可解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extrapolation of solvability of the regularity and the Poisson regularity problems in rough domains

Let ΩRn+1, n2, be an open set satisfying the corkscrew condition with n-Ahlfors regular boundary ∂Ω, but without any connectivity assumption. We study the connection between solvability of the regularity problem for divergence form elliptic operators with boundary data in the Hajłasz-Sobolev space M1,1(Ω) and the weak-A property of the associated elliptic measure. In particular, we show that solvability of the regularity problem in M1,1(Ω) is equivalent to the solvability of the regularity problem in M1,p(Ω) for some p>1. We also prove analogous extrapolation results for the Poisson regularity problem defined on tent spaces. Moreover, under the hypothesis that ∂Ω supports a weak (1,1)-Poincaré inequality, we show that the solvability of the regularity problem in the Hajłasz-Sobolev space M1,1(Ω) is equivalent to a stronger solvability in a Hardy-Sobolev space of tangential derivatives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信