纳米催化医学实现了治疗细菌感染的新一代疗法

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Min Ge , Feng Jiang , Han Lin
{"title":"纳米催化医学实现了治疗细菌感染的新一代疗法","authors":"Min Ge ,&nbsp;Feng Jiang ,&nbsp;Han Lin","doi":"10.1016/j.mtbio.2024.101255","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid rise of antibiotic-resistant strains and the persistence of biofilm-associated infections have significantly challenged global public health. Unfortunately, current clinical high-dose antibiotic regimens and combination therapies often fail to completely eradicate these infections, which can lead to adverse side effects and further drug resistance. Amidst this challenge, however, the burgeoning development in nanotechnology and nanomaterials brings hopes. This review provides a comprehensive summary of recent advancements in nanomaterials for treating bacterial infections. Firstly, the research progress of catalytic therapies in the field of antimicrobials is comprehensively discussed. Thereafter, we systematically discuss the strategies of nanomaterials for anti-bacterial infection therapies, including endogenous response catalytic therapy, exogenous stimulation catalytic therapy, and catalytic immunotherapy, in order to elucidate the mechanism of nanocatalytic anti-infections. Based on the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.</p></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101255"},"PeriodicalIF":8.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590006424003168/pdfft?md5=f751ebbf6c235e07c4e7c6ff65b1a6e4&pid=1-s2.0-S2590006424003168-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nanocatalytic medicine enabled next-generation therapeutics for bacterial infections\",\"authors\":\"Min Ge ,&nbsp;Feng Jiang ,&nbsp;Han Lin\",\"doi\":\"10.1016/j.mtbio.2024.101255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rapid rise of antibiotic-resistant strains and the persistence of biofilm-associated infections have significantly challenged global public health. Unfortunately, current clinical high-dose antibiotic regimens and combination therapies often fail to completely eradicate these infections, which can lead to adverse side effects and further drug resistance. Amidst this challenge, however, the burgeoning development in nanotechnology and nanomaterials brings hopes. This review provides a comprehensive summary of recent advancements in nanomaterials for treating bacterial infections. Firstly, the research progress of catalytic therapies in the field of antimicrobials is comprehensively discussed. Thereafter, we systematically discuss the strategies of nanomaterials for anti-bacterial infection therapies, including endogenous response catalytic therapy, exogenous stimulation catalytic therapy, and catalytic immunotherapy, in order to elucidate the mechanism of nanocatalytic anti-infections. Based on the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.</p></div>\",\"PeriodicalId\":18310,\"journal\":{\"name\":\"Materials Today Bio\",\"volume\":\"29 \",\"pages\":\"Article 101255\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590006424003168/pdfft?md5=f751ebbf6c235e07c4e7c6ff65b1a6e4&pid=1-s2.0-S2590006424003168-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Bio\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590006424003168\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424003168","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

抗生素耐药菌株的迅速增加和生物膜相关感染的持续存在对全球公共卫生构成了巨大挑战。遗憾的是,目前临床上使用的大剂量抗生素疗法和联合疗法往往无法彻底根除这些感染,从而导致不良副作用和进一步的耐药性。然而,在这一挑战中,纳米技术和纳米材料的蓬勃发展带来了希望。本综述全面总结了纳米材料在治疗细菌感染方面的最新进展。首先,全面讨论了抗菌剂领域催化疗法的研究进展。随后,系统论述了纳米材料用于抗细菌感染疗法的策略,包括内源性反应催化疗法、外源性刺激催化疗法和催化免疫疗法,以阐明纳米催化抗感染的机理。基于目前的技术水平,我们最后就这一迅速崛起的领域所面临的挑战和未来前景发表了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanocatalytic medicine enabled next-generation therapeutics for bacterial infections

Nanocatalytic medicine enabled next-generation therapeutics for bacterial infections

The rapid rise of antibiotic-resistant strains and the persistence of biofilm-associated infections have significantly challenged global public health. Unfortunately, current clinical high-dose antibiotic regimens and combination therapies often fail to completely eradicate these infections, which can lead to adverse side effects and further drug resistance. Amidst this challenge, however, the burgeoning development in nanotechnology and nanomaterials brings hopes. This review provides a comprehensive summary of recent advancements in nanomaterials for treating bacterial infections. Firstly, the research progress of catalytic therapies in the field of antimicrobials is comprehensively discussed. Thereafter, we systematically discuss the strategies of nanomaterials for anti-bacterial infection therapies, including endogenous response catalytic therapy, exogenous stimulation catalytic therapy, and catalytic immunotherapy, in order to elucidate the mechanism of nanocatalytic anti-infections. Based on the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信