{"title":"加利福尼亚边疆盆地的循环与扩散","authors":"","doi":"10.1016/j.pocean.2024.103349","DOIUrl":null,"url":null,"abstract":"<div><p>The Borderland Basins off Southern California are semi-isolated sea-floor depressions with connections to each other and to the open Pacific Ocean over narrow sills. A high-resolution, multi-year simulation is analyzed for its currents, stratification, and dissolved oxygen, with a focus on the mean conditions, intrinsic variability, and exchange rates with surrounding waters. The three shallowest, closest basins are given the most attention: Santa Barbara, Santa Monica, and San Pedro. Below the basin sill depths, the water masses in the basins are distinct from surrounding waters at the same density indicating a degree of dynamical isolation. The mean circulations are anti-clockwise around the topographic edges of the basins, consistent with eddy-driven flows (<em>i.e.,</em> topostrophy). The mesoscale eddy variability is stronger than the mean flow, and at least partially it is comprised of topographic Rossby waves circuiting the edge slopes. Its magnitude is similar to the high-frequency currents (mostly tidal). There are recurrent cross-sill flows driven by an unbalanced pressure-gradient force, and these intermittently cause water mass flushing of the basins. The oxygen levels in the basins are occasionally anoxic, and they are maintained by a balance of downward physical transport from above, local respiration, and flux into the sediments. From a combination of multiple means of estimation, the deep basin water mass renewal times are on the order of a year or more, and this time is somewhat shorter in the Santa Barbara Basin than the others. The renewal processes are by intermittent sill overflows and by vertical exchanges through eddies and tides.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circulation and dispersal in California’s Borderland Basins\",\"authors\":\"\",\"doi\":\"10.1016/j.pocean.2024.103349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Borderland Basins off Southern California are semi-isolated sea-floor depressions with connections to each other and to the open Pacific Ocean over narrow sills. A high-resolution, multi-year simulation is analyzed for its currents, stratification, and dissolved oxygen, with a focus on the mean conditions, intrinsic variability, and exchange rates with surrounding waters. The three shallowest, closest basins are given the most attention: Santa Barbara, Santa Monica, and San Pedro. Below the basin sill depths, the water masses in the basins are distinct from surrounding waters at the same density indicating a degree of dynamical isolation. The mean circulations are anti-clockwise around the topographic edges of the basins, consistent with eddy-driven flows (<em>i.e.,</em> topostrophy). The mesoscale eddy variability is stronger than the mean flow, and at least partially it is comprised of topographic Rossby waves circuiting the edge slopes. Its magnitude is similar to the high-frequency currents (mostly tidal). There are recurrent cross-sill flows driven by an unbalanced pressure-gradient force, and these intermittently cause water mass flushing of the basins. The oxygen levels in the basins are occasionally anoxic, and they are maintained by a balance of downward physical transport from above, local respiration, and flux into the sediments. From a combination of multiple means of estimation, the deep basin water mass renewal times are on the order of a year or more, and this time is somewhat shorter in the Santa Barbara Basin than the others. The renewal processes are by intermittent sill overflows and by vertical exchanges through eddies and tides.</p></div>\",\"PeriodicalId\":20620,\"journal\":{\"name\":\"Progress in Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079661124001551\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079661124001551","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Circulation and dispersal in California’s Borderland Basins
The Borderland Basins off Southern California are semi-isolated sea-floor depressions with connections to each other and to the open Pacific Ocean over narrow sills. A high-resolution, multi-year simulation is analyzed for its currents, stratification, and dissolved oxygen, with a focus on the mean conditions, intrinsic variability, and exchange rates with surrounding waters. The three shallowest, closest basins are given the most attention: Santa Barbara, Santa Monica, and San Pedro. Below the basin sill depths, the water masses in the basins are distinct from surrounding waters at the same density indicating a degree of dynamical isolation. The mean circulations are anti-clockwise around the topographic edges of the basins, consistent with eddy-driven flows (i.e., topostrophy). The mesoscale eddy variability is stronger than the mean flow, and at least partially it is comprised of topographic Rossby waves circuiting the edge slopes. Its magnitude is similar to the high-frequency currents (mostly tidal). There are recurrent cross-sill flows driven by an unbalanced pressure-gradient force, and these intermittently cause water mass flushing of the basins. The oxygen levels in the basins are occasionally anoxic, and they are maintained by a balance of downward physical transport from above, local respiration, and flux into the sediments. From a combination of multiple means of estimation, the deep basin water mass renewal times are on the order of a year or more, and this time is somewhat shorter in the Santa Barbara Basin than the others. The renewal processes are by intermittent sill overflows and by vertical exchanges through eddies and tides.
期刊介绍:
Progress in Oceanography publishes the longer, more comprehensive papers that most oceanographers feel are necessary, on occasion, to do justice to their work. Contributions are generally either a review of an aspect of oceanography or a treatise on an expanding oceanographic subject. The articles cover the entire spectrum of disciplines within the science of oceanography. Occasionally volumes are devoted to collections of papers and conference proceedings of exceptional interest. Essential reading for all oceanographers.