利用新型超级学习算法研究与运输相关的二氧化碳排放决定因素

IF 7.3 1区 工程技术 Q1 ENVIRONMENTAL STUDIES
Mustafa Tevfik Kartal , Ugur Korkut Pata , Özer Depren
{"title":"利用新型超级学习算法研究与运输相关的二氧化碳排放决定因素","authors":"Mustafa Tevfik Kartal ,&nbsp;Ugur Korkut Pata ,&nbsp;Özer Depren","doi":"10.1016/j.trd.2024.104429","DOIUrl":null,"url":null,"abstract":"<div><p>Combating carbon dioxide (CO<sub>2</sub>) emissions across sectors becomes inevitable due to negative impacts. The transport sector takes place among the most important sectors. Accordingly, the study examines transport-related CO<sub>2</sub> (TCO<sub>2</sub>) emissions in the top four emitting countries (namely, the United States, Canada, Saudi Arabia, &amp; Australia) by considering six explanatory variables, using data from 1990/Q1 to 2020/Q4, and performing an artificial intelligence approach. The outcomes show fresh insights that (i) super learner (SL) algorithm overwhelms other machine-learning algorithms in terms of model performance; (ii) energy intensity has an increasing impact on TCO<sub>2</sub> emissions, whereas others (e.g., financial development, income, globalization, oil use, &amp; urbanization) have a mixed impact across countries; (iii) the influential variables have some critical thresholds, where the power of impacts differentiate across these limits. Hence, the SL algorithm presents robust outcomes for TCO<sub>2</sub> emissions. Accordingly, a set of policy endeavors for the countries examined are also discussed.</p></div>","PeriodicalId":23277,"journal":{"name":"Transportation Research Part D-transport and Environment","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining Determinants of Transport-Related Carbon Dioxide Emissions by Novel Super Learner Algorithm\",\"authors\":\"Mustafa Tevfik Kartal ,&nbsp;Ugur Korkut Pata ,&nbsp;Özer Depren\",\"doi\":\"10.1016/j.trd.2024.104429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Combating carbon dioxide (CO<sub>2</sub>) emissions across sectors becomes inevitable due to negative impacts. The transport sector takes place among the most important sectors. Accordingly, the study examines transport-related CO<sub>2</sub> (TCO<sub>2</sub>) emissions in the top four emitting countries (namely, the United States, Canada, Saudi Arabia, &amp; Australia) by considering six explanatory variables, using data from 1990/Q1 to 2020/Q4, and performing an artificial intelligence approach. The outcomes show fresh insights that (i) super learner (SL) algorithm overwhelms other machine-learning algorithms in terms of model performance; (ii) energy intensity has an increasing impact on TCO<sub>2</sub> emissions, whereas others (e.g., financial development, income, globalization, oil use, &amp; urbanization) have a mixed impact across countries; (iii) the influential variables have some critical thresholds, where the power of impacts differentiate across these limits. Hence, the SL algorithm presents robust outcomes for TCO<sub>2</sub> emissions. Accordingly, a set of policy endeavors for the countries examined are also discussed.</p></div>\",\"PeriodicalId\":23277,\"journal\":{\"name\":\"Transportation Research Part D-transport and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part D-transport and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361920924003869\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part D-transport and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361920924003869","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

由于二氧化碳(CO2)排放会产生负面影响,因此各行各业减少二氧化碳(CO2)排放势在必行。运输部门是最重要的部门之一。因此,本研究通过考虑六个解释变量,使用 1990/Q1 至 2020/Q4 的数据,并采用人工智能方法,研究了四大排放国(即美国、加拿大、沙特阿拉伯、& 澳大利亚)与交通相关的二氧化碳(TCO2)排放量。结果显示了以下新见解:(i) 超级学习器(SL)算法在模型性能方面压倒了其他机器学习算法;(ii) 能源强度对 TCO2 排放量的影响越来越大,而其他变量(如金融发展、收入、全球化、石油使用和城市化)对各国的影响参差不齐;(iii) 有影响力的变量有一些临界阈值,在这些阈值范围内,影响的力量有所不同。因此,SL 算法对 TCO2 排放量具有稳健的结果。因此,还讨论了所研究国家的一系列政策努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examining Determinants of Transport-Related Carbon Dioxide Emissions by Novel Super Learner Algorithm

Combating carbon dioxide (CO2) emissions across sectors becomes inevitable due to negative impacts. The transport sector takes place among the most important sectors. Accordingly, the study examines transport-related CO2 (TCO2) emissions in the top four emitting countries (namely, the United States, Canada, Saudi Arabia, & Australia) by considering six explanatory variables, using data from 1990/Q1 to 2020/Q4, and performing an artificial intelligence approach. The outcomes show fresh insights that (i) super learner (SL) algorithm overwhelms other machine-learning algorithms in terms of model performance; (ii) energy intensity has an increasing impact on TCO2 emissions, whereas others (e.g., financial development, income, globalization, oil use, & urbanization) have a mixed impact across countries; (iii) the influential variables have some critical thresholds, where the power of impacts differentiate across these limits. Hence, the SL algorithm presents robust outcomes for TCO2 emissions. Accordingly, a set of policy endeavors for the countries examined are also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.40
自引率
9.20%
发文量
314
审稿时长
39 days
期刊介绍: Transportation Research Part D: Transport and Environment focuses on original research exploring the environmental impacts of transportation, policy responses to these impacts, and their implications for transportation system design, planning, and management. The journal comprehensively covers the interaction between transportation and the environment, ranging from local effects on specific geographical areas to global implications such as natural resource depletion and atmospheric pollution. We welcome research papers across all transportation modes, including maritime, air, and land transportation, assessing their environmental impacts broadly. Papers addressing both mobile aspects and transportation infrastructure are considered. The journal prioritizes empirical findings and policy responses of regulatory, planning, technical, or fiscal nature. Articles are policy-driven, accessible, and applicable to readers from diverse disciplines, emphasizing relevance and practicality. We encourage interdisciplinary submissions and welcome contributions from economically developing and advanced countries alike, reflecting our international orientation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信