一类 Monge-Ampère 型方程的粘性解的存在性、唯一性和内部正则性

IF 2.4 2区 数学 Q1 MATHEMATICS
Mengni Li , You Li
{"title":"一类 Monge-Ampère 型方程的粘性解的存在性、唯一性和内部正则性","authors":"Mengni Li ,&nbsp;You Li","doi":"10.1016/j.jde.2024.09.024","DOIUrl":null,"url":null,"abstract":"<div><p>The Monge-Ampère type equations over bounded convex domains arise in a host of geometric applications. In this paper, we focus on the Dirichlet problem for a class of Monge-Ampère type equations, which can be degenerate or singular near the boundary of convex domains. Viscosity subsolutions and viscosity supersolutions to the problem can be constructed via comparison principle. Finally, we demonstrate the existence, uniqueness and a series of interior regularities (including <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msup></math></span> with <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span>, <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>μ</mi></mrow></msup></math></span> with <span><math><mi>μ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>) of the viscosity solution to the problem.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence, uniqueness and interior regularity of viscosity solutions for a class of Monge-Ampère type equations\",\"authors\":\"Mengni Li ,&nbsp;You Li\",\"doi\":\"10.1016/j.jde.2024.09.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Monge-Ampère type equations over bounded convex domains arise in a host of geometric applications. In this paper, we focus on the Dirichlet problem for a class of Monge-Ampère type equations, which can be degenerate or singular near the boundary of convex domains. Viscosity subsolutions and viscosity supersolutions to the problem can be constructed via comparison principle. Finally, we demonstrate the existence, uniqueness and a series of interior regularities (including <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msup></math></span> with <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span>, <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>μ</mi></mrow></msup></math></span> with <span><math><mi>μ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>) of the viscosity solution to the problem.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006090\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006090","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

有界凸域上的 Monge-Ampère 型方程出现在大量几何应用中。在本文中,我们重点研究一类 Monge-Ampère 型方程的 Dirichlet 问题,这类方程在凸域边界附近可能退化或奇异。通过比较原理,我们可以构建该问题的粘性子解和粘性超解。最后,我们证明了问题的粘性解的存在性、唯一性和一系列内部正则性(包括 p∈(1,+∞)的 W2,p、μ∈(0,1)的 C1,μ 和 C∞)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence, uniqueness and interior regularity of viscosity solutions for a class of Monge-Ampère type equations

The Monge-Ampère type equations over bounded convex domains arise in a host of geometric applications. In this paper, we focus on the Dirichlet problem for a class of Monge-Ampère type equations, which can be degenerate or singular near the boundary of convex domains. Viscosity subsolutions and viscosity supersolutions to the problem can be constructed via comparison principle. Finally, we demonstrate the existence, uniqueness and a series of interior regularities (including W2,p with p(1,+), C1,μ with μ(0,1), and C) of the viscosity solution to the problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信