{"title":"一类 Monge-Ampère 型方程的粘性解的存在性、唯一性和内部正则性","authors":"Mengni Li , You Li","doi":"10.1016/j.jde.2024.09.024","DOIUrl":null,"url":null,"abstract":"<div><p>The Monge-Ampère type equations over bounded convex domains arise in a host of geometric applications. In this paper, we focus on the Dirichlet problem for a class of Monge-Ampère type equations, which can be degenerate or singular near the boundary of convex domains. Viscosity subsolutions and viscosity supersolutions to the problem can be constructed via comparison principle. Finally, we demonstrate the existence, uniqueness and a series of interior regularities (including <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msup></math></span> with <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span>, <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>μ</mi></mrow></msup></math></span> with <span><math><mi>μ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>) of the viscosity solution to the problem.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence, uniqueness and interior regularity of viscosity solutions for a class of Monge-Ampère type equations\",\"authors\":\"Mengni Li , You Li\",\"doi\":\"10.1016/j.jde.2024.09.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Monge-Ampère type equations over bounded convex domains arise in a host of geometric applications. In this paper, we focus on the Dirichlet problem for a class of Monge-Ampère type equations, which can be degenerate or singular near the boundary of convex domains. Viscosity subsolutions and viscosity supersolutions to the problem can be constructed via comparison principle. Finally, we demonstrate the existence, uniqueness and a series of interior regularities (including <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msup></math></span> with <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span>, <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>μ</mi></mrow></msup></math></span> with <span><math><mi>μ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>) of the viscosity solution to the problem.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006090\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006090","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Existence, uniqueness and interior regularity of viscosity solutions for a class of Monge-Ampère type equations
The Monge-Ampère type equations over bounded convex domains arise in a host of geometric applications. In this paper, we focus on the Dirichlet problem for a class of Monge-Ampère type equations, which can be degenerate or singular near the boundary of convex domains. Viscosity subsolutions and viscosity supersolutions to the problem can be constructed via comparison principle. Finally, we demonstrate the existence, uniqueness and a series of interior regularities (including with , with , and ) of the viscosity solution to the problem.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics