随机薛定谔延迟晶格系统不变量的瓦瑟斯坦收敛率

IF 2.4 2区 数学 Q1 MATHEMATICS
Zhang Chen , Dandan Yang , Shitao Zhong
{"title":"随机薛定谔延迟晶格系统不变量的瓦瑟斯坦收敛率","authors":"Zhang Chen ,&nbsp;Dandan Yang ,&nbsp;Shitao Zhong","doi":"10.1016/j.jde.2024.08.065","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with the convergence of invariant measures in the Wasserstein sense for the stochastic Schrödinger delay lattice systems as delay parameter <em>ρ</em> or parameter <em>β</em> approaches zero. Through <em>p</em>th-order moment estimates of solutions to systems, as well as the Hölder continuity estimates of solutions with respect to time, we obtain the convergence of solutions about initial data and the above parameters. Then together with high-order moment estimates of invariant measures, we prove that the unique invariant measure of such delay lattice system converges to the invariant measure of limiting system in the Wasserstein sense as delay parameter <em>ρ</em> or parameter <em>β</em> approaches zero, and the corresponding convergence rate is also obtained.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wasserstein convergence rate of invariant measures for stochastic Schrödinger delay lattice systems\",\"authors\":\"Zhang Chen ,&nbsp;Dandan Yang ,&nbsp;Shitao Zhong\",\"doi\":\"10.1016/j.jde.2024.08.065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is concerned with the convergence of invariant measures in the Wasserstein sense for the stochastic Schrödinger delay lattice systems as delay parameter <em>ρ</em> or parameter <em>β</em> approaches zero. Through <em>p</em>th-order moment estimates of solutions to systems, as well as the Hölder continuity estimates of solutions with respect to time, we obtain the convergence of solutions about initial data and the above parameters. Then together with high-order moment estimates of invariant measures, we prove that the unique invariant measure of such delay lattice system converges to the invariant measure of limiting system in the Wasserstein sense as delay parameter <em>ρ</em> or parameter <em>β</em> approaches zero, and the corresponding convergence rate is also obtained.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624005540\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005540","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文关注的是当延迟参数ρ或参数β趋近于零时,随机薛定谔延迟网格系统在瓦瑟斯坦意义上的不变度量的收敛性。通过对系统解的 pth 阶矩估计以及解相对于时间的 Hölder 连续性估计,我们得到了解对初始数据和上述参数的收敛性。然后,结合不变度量的高阶矩估计,我们证明了当延迟参数ρ或参数β趋近于零时,这种延迟网格系统的唯一不变度量收敛于瓦瑟斯坦意义上的极限系统不变度量,并得到了相应的收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wasserstein convergence rate of invariant measures for stochastic Schrödinger delay lattice systems

This paper is concerned with the convergence of invariant measures in the Wasserstein sense for the stochastic Schrödinger delay lattice systems as delay parameter ρ or parameter β approaches zero. Through pth-order moment estimates of solutions to systems, as well as the Hölder continuity estimates of solutions with respect to time, we obtain the convergence of solutions about initial data and the above parameters. Then together with high-order moment estimates of invariant measures, we prove that the unique invariant measure of such delay lattice system converges to the invariant measure of limiting system in the Wasserstein sense as delay parameter ρ or parameter β approaches zero, and the corresponding convergence rate is also obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信