{"title":"多晶 BiFeO3 和 Bi5Ti3FeO15 薄膜中铁电畴和畴壁的电导率","authors":"","doi":"10.1016/j.jpcs.2024.112347","DOIUrl":null,"url":null,"abstract":"<div><p>The unique properties of domain wall conductivity have garnered significant interest for their potential application in non-volatile ferroelectric domain wall memory. In this study, we investigated the electrical conduction within ferroelectric domains and domain walls of polycrystalline BiFeO<sub>3</sub> (BFO) and Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> (BTFO) thin films, which were deposited on Pt/Ta/glass substrates via pulsed laser deposition. BFO thin film consistently demonstrated a (111) orientation, while BTFO thin film exhibited mixed crystallinity, featuring both <em>c</em>-axis and <em>a</em>-axis orientations. This mixed crystallinity in BTFO thin film contributed to a higher remanent polarization of 38.2 μC/cm<sup>2</sup> compared to 20.3 μC/cm<sup>2</sup> in BFO thin film, which is attributed to the <em>a</em>-oriented crystallinity within the Bi-layered perovskite structure of BTFO thin film. Additionally, BTFO thin film displayed a greater prevalence of 90° domain walls, which enhanced electrical conduction due to charge accumulation, particularly when compared to 180° domain walls. A significant change in resistance was observed when the domain wall was present versus absent, with a more pronounced effect in the BTFO capacitor compared to the BFO capacitor. This is attributed to the higher domain wall conductivity in BTFO thin film, confirming their superiority for use in ferroelectric capacitor devices that leverage domain wall conductivity.</p></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical conduction of ferroelectric domains and domain walls in polycrystalline BiFeO3 and Bi5Ti3FeO15 thin films\",\"authors\":\"\",\"doi\":\"10.1016/j.jpcs.2024.112347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The unique properties of domain wall conductivity have garnered significant interest for their potential application in non-volatile ferroelectric domain wall memory. In this study, we investigated the electrical conduction within ferroelectric domains and domain walls of polycrystalline BiFeO<sub>3</sub> (BFO) and Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> (BTFO) thin films, which were deposited on Pt/Ta/glass substrates via pulsed laser deposition. BFO thin film consistently demonstrated a (111) orientation, while BTFO thin film exhibited mixed crystallinity, featuring both <em>c</em>-axis and <em>a</em>-axis orientations. This mixed crystallinity in BTFO thin film contributed to a higher remanent polarization of 38.2 μC/cm<sup>2</sup> compared to 20.3 μC/cm<sup>2</sup> in BFO thin film, which is attributed to the <em>a</em>-oriented crystallinity within the Bi-layered perovskite structure of BTFO thin film. Additionally, BTFO thin film displayed a greater prevalence of 90° domain walls, which enhanced electrical conduction due to charge accumulation, particularly when compared to 180° domain walls. A significant change in resistance was observed when the domain wall was present versus absent, with a more pronounced effect in the BTFO capacitor compared to the BFO capacitor. This is attributed to the higher domain wall conductivity in BTFO thin film, confirming their superiority for use in ferroelectric capacitor devices that leverage domain wall conductivity.</p></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724004827\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724004827","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrical conduction of ferroelectric domains and domain walls in polycrystalline BiFeO3 and Bi5Ti3FeO15 thin films
The unique properties of domain wall conductivity have garnered significant interest for their potential application in non-volatile ferroelectric domain wall memory. In this study, we investigated the electrical conduction within ferroelectric domains and domain walls of polycrystalline BiFeO3 (BFO) and Bi5Ti3FeO15 (BTFO) thin films, which were deposited on Pt/Ta/glass substrates via pulsed laser deposition. BFO thin film consistently demonstrated a (111) orientation, while BTFO thin film exhibited mixed crystallinity, featuring both c-axis and a-axis orientations. This mixed crystallinity in BTFO thin film contributed to a higher remanent polarization of 38.2 μC/cm2 compared to 20.3 μC/cm2 in BFO thin film, which is attributed to the a-oriented crystallinity within the Bi-layered perovskite structure of BTFO thin film. Additionally, BTFO thin film displayed a greater prevalence of 90° domain walls, which enhanced electrical conduction due to charge accumulation, particularly when compared to 180° domain walls. A significant change in resistance was observed when the domain wall was present versus absent, with a more pronounced effect in the BTFO capacitor compared to the BFO capacitor. This is attributed to the higher domain wall conductivity in BTFO thin film, confirming their superiority for use in ferroelectric capacitor devices that leverage domain wall conductivity.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.