{"title":"一些 (2+1) 维非线性演化方程和折叠波的新精确解","authors":"Kai Zhou , Sen-Yue Lou , Shou-Feng Shen","doi":"10.1016/j.wavemoti.2024.103414","DOIUrl":null,"url":null,"abstract":"<div><p>By means of the Hirota’s bilinear method and special multi-linear variable separation ansatz, new exact solutions with low dimensional arbitrary functions of some (2+1)-dimensional nonlinear evolution equations are constructed. That is, we propose a unified method for solving the mNNV-type equations and the Burger-type equations. The key factor to the success of this method is that we have constructed some simplified Hirota’s bilinear calculation formulas in the form of variable separation of arbitrary order. Appropriate multi-valued functions are used to construct coherent structures such as the bell-type, peak-type and loop-type folding waves.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"131 ","pages":"Article 103414"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New exact solutions of some (2+1)-dimensional nonlinear evolution equations and folding waves\",\"authors\":\"Kai Zhou , Sen-Yue Lou , Shou-Feng Shen\",\"doi\":\"10.1016/j.wavemoti.2024.103414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By means of the Hirota’s bilinear method and special multi-linear variable separation ansatz, new exact solutions with low dimensional arbitrary functions of some (2+1)-dimensional nonlinear evolution equations are constructed. That is, we propose a unified method for solving the mNNV-type equations and the Burger-type equations. The key factor to the success of this method is that we have constructed some simplified Hirota’s bilinear calculation formulas in the form of variable separation of arbitrary order. Appropriate multi-valued functions are used to construct coherent structures such as the bell-type, peak-type and loop-type folding waves.</p></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"131 \",\"pages\":\"Article 103414\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524001446\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001446","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
New exact solutions of some (2+1)-dimensional nonlinear evolution equations and folding waves
By means of the Hirota’s bilinear method and special multi-linear variable separation ansatz, new exact solutions with low dimensional arbitrary functions of some (2+1)-dimensional nonlinear evolution equations are constructed. That is, we propose a unified method for solving the mNNV-type equations and the Burger-type equations. The key factor to the success of this method is that we have constructed some simplified Hirota’s bilinear calculation formulas in the form of variable separation of arbitrary order. Appropriate multi-valued functions are used to construct coherent structures such as the bell-type, peak-type and loop-type folding waves.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.