{"title":"基于图论和滨水可达性的生态水文连通方案优化框架","authors":"Yuping Han , Yao Xu , Runxiang Cao , Zhongpei Liu","doi":"10.1016/j.ejrh.2024.101975","DOIUrl":null,"url":null,"abstract":"<div><h3>Study Region</h3><p>Zhengzhou section of the Jialu River.</p></div><div><h3>Study Focus</h3><p>In this study, the Zhengzhou section of the Jialu River was chosen to construct a watershed river network graph model based on graph theory, and this model could describe water volume distribution at diversion nodes and water balance relationships, which aimed to maximize the ecological landscape area. Considering residential aggregation along riverbanks, a waterfront accessibility matrix was used to derive an optimized water system connectivity scheme based on flow allocation at diversion nodes.</p></div><div><h3>New Hydrological Insights for the Region</h3><p>In the optimized scheme, flow distribution from 5 diversion nodes to downstream river sections ranged from 0.2 to 0.8, resulting in significant changes in the landscape area of 20 river segments. The ecological landscape area under the optimal scenario was 31.06 km<sup>2</sup>, which was 0.03 km<sup>2</sup> more than the worst-case scenario. The water system connectivity allocation remained consistent before and after considering waterfront accessibility, and the optimal weighted landscape area was 12.69 km<sup>2</sup> with waterfront accessibility in mind. Considering the accessibility of waterfront areas, the center of gravity of the water system connectivity scheme shad undergone a significant change before and after. The research results could provide theoretical support for the construction of regional ecological civilization.</p></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"56 ","pages":"Article 101975"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214581824003240/pdfft?md5=44a0c0557317000db15a407ff0275df4&pid=1-s2.0-S2214581824003240-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimization framework for eco-hydrological connectivity schemes based on graph theory and waterfront accessibility\",\"authors\":\"Yuping Han , Yao Xu , Runxiang Cao , Zhongpei Liu\",\"doi\":\"10.1016/j.ejrh.2024.101975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Study Region</h3><p>Zhengzhou section of the Jialu River.</p></div><div><h3>Study Focus</h3><p>In this study, the Zhengzhou section of the Jialu River was chosen to construct a watershed river network graph model based on graph theory, and this model could describe water volume distribution at diversion nodes and water balance relationships, which aimed to maximize the ecological landscape area. Considering residential aggregation along riverbanks, a waterfront accessibility matrix was used to derive an optimized water system connectivity scheme based on flow allocation at diversion nodes.</p></div><div><h3>New Hydrological Insights for the Region</h3><p>In the optimized scheme, flow distribution from 5 diversion nodes to downstream river sections ranged from 0.2 to 0.8, resulting in significant changes in the landscape area of 20 river segments. The ecological landscape area under the optimal scenario was 31.06 km<sup>2</sup>, which was 0.03 km<sup>2</sup> more than the worst-case scenario. The water system connectivity allocation remained consistent before and after considering waterfront accessibility, and the optimal weighted landscape area was 12.69 km<sup>2</sup> with waterfront accessibility in mind. Considering the accessibility of waterfront areas, the center of gravity of the water system connectivity scheme shad undergone a significant change before and after. The research results could provide theoretical support for the construction of regional ecological civilization.</p></div>\",\"PeriodicalId\":48620,\"journal\":{\"name\":\"Journal of Hydrology-Regional Studies\",\"volume\":\"56 \",\"pages\":\"Article 101975\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214581824003240/pdfft?md5=44a0c0557317000db15a407ff0275df4&pid=1-s2.0-S2214581824003240-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology-Regional Studies\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214581824003240\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581824003240","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Optimization framework for eco-hydrological connectivity schemes based on graph theory and waterfront accessibility
Study Region
Zhengzhou section of the Jialu River.
Study Focus
In this study, the Zhengzhou section of the Jialu River was chosen to construct a watershed river network graph model based on graph theory, and this model could describe water volume distribution at diversion nodes and water balance relationships, which aimed to maximize the ecological landscape area. Considering residential aggregation along riverbanks, a waterfront accessibility matrix was used to derive an optimized water system connectivity scheme based on flow allocation at diversion nodes.
New Hydrological Insights for the Region
In the optimized scheme, flow distribution from 5 diversion nodes to downstream river sections ranged from 0.2 to 0.8, resulting in significant changes in the landscape area of 20 river segments. The ecological landscape area under the optimal scenario was 31.06 km2, which was 0.03 km2 more than the worst-case scenario. The water system connectivity allocation remained consistent before and after considering waterfront accessibility, and the optimal weighted landscape area was 12.69 km2 with waterfront accessibility in mind. Considering the accessibility of waterfront areas, the center of gravity of the water system connectivity scheme shad undergone a significant change before and after. The research results could provide theoretical support for the construction of regional ecological civilization.
期刊介绍:
Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.