{"title":"板块凌空变形控制喜马拉雅大地壳沿线地震耦合推断","authors":"Dibyashakti Panda, Eric O. Lindsey","doi":"10.1029/2024JB029819","DOIUrl":null,"url":null,"abstract":"<p>The seismic hazard along the Himalayan arc remains a focus of discussion due to its huge potential societal impact. Taking advantage of modern, dense geodetic observations, several attempts have been made to provide a clear picture of the present-day rate of strain accumulation caused by interseismic coupling on the Main Himalayan Thrust (MHT). However, there are differing opinions regarding the interpretation of spatial variation in interseismic coupling along some parts of the arc. Critically, the resolution of heterogeneity of coupling is limited due to sparse geodetic observations in some areas. In the present work, we use an updated compilation of all available Global Navigation Satellite System (GNSS) data along the Himalayan arc and a suite of kinematic block models to account for deformation within the overriding plate to characterize the status of interseismic plate coupling. Our results show that the MHT is highly coupled (>0.8) along its entire length and the coupling distribution is nearly binary along-dip. This translates to a high seismic hazard in the densely populated Indo-Gangetic plains with a seismic moment accumulation of one Mw 8.7 megathrust earthquake per 100 years. Our results suggest that previously inferred low coupling zones along the MHT are possible manifestations of block modeling artifacts, where the fault segments in the overriding plate control the megathrust slip distribution more strongly than structures within the Indian lithosphere. This result highlights a strong need for better characterization of deforming structures in the overriding plate within the Himalayas and southern Tibetan plateau.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"129 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029819","citationCount":"0","resultStr":"{\"title\":\"Overriding Plate Deformation Controls Inferences of Interseismic Coupling Along the Himalayan Megathrust\",\"authors\":\"Dibyashakti Panda, Eric O. Lindsey\",\"doi\":\"10.1029/2024JB029819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The seismic hazard along the Himalayan arc remains a focus of discussion due to its huge potential societal impact. Taking advantage of modern, dense geodetic observations, several attempts have been made to provide a clear picture of the present-day rate of strain accumulation caused by interseismic coupling on the Main Himalayan Thrust (MHT). However, there are differing opinions regarding the interpretation of spatial variation in interseismic coupling along some parts of the arc. Critically, the resolution of heterogeneity of coupling is limited due to sparse geodetic observations in some areas. In the present work, we use an updated compilation of all available Global Navigation Satellite System (GNSS) data along the Himalayan arc and a suite of kinematic block models to account for deformation within the overriding plate to characterize the status of interseismic plate coupling. Our results show that the MHT is highly coupled (>0.8) along its entire length and the coupling distribution is nearly binary along-dip. This translates to a high seismic hazard in the densely populated Indo-Gangetic plains with a seismic moment accumulation of one Mw 8.7 megathrust earthquake per 100 years. Our results suggest that previously inferred low coupling zones along the MHT are possible manifestations of block modeling artifacts, where the fault segments in the overriding plate control the megathrust slip distribution more strongly than structures within the Indian lithosphere. This result highlights a strong need for better characterization of deforming structures in the overriding plate within the Himalayas and southern Tibetan plateau.</p>\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":\"129 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029819\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029819\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029819","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Overriding Plate Deformation Controls Inferences of Interseismic Coupling Along the Himalayan Megathrust
The seismic hazard along the Himalayan arc remains a focus of discussion due to its huge potential societal impact. Taking advantage of modern, dense geodetic observations, several attempts have been made to provide a clear picture of the present-day rate of strain accumulation caused by interseismic coupling on the Main Himalayan Thrust (MHT). However, there are differing opinions regarding the interpretation of spatial variation in interseismic coupling along some parts of the arc. Critically, the resolution of heterogeneity of coupling is limited due to sparse geodetic observations in some areas. In the present work, we use an updated compilation of all available Global Navigation Satellite System (GNSS) data along the Himalayan arc and a suite of kinematic block models to account for deformation within the overriding plate to characterize the status of interseismic plate coupling. Our results show that the MHT is highly coupled (>0.8) along its entire length and the coupling distribution is nearly binary along-dip. This translates to a high seismic hazard in the densely populated Indo-Gangetic plains with a seismic moment accumulation of one Mw 8.7 megathrust earthquake per 100 years. Our results suggest that previously inferred low coupling zones along the MHT are possible manifestations of block modeling artifacts, where the fault segments in the overriding plate control the megathrust slip distribution more strongly than structures within the Indian lithosphere. This result highlights a strong need for better characterization of deforming structures in the overriding plate within the Himalayas and southern Tibetan plateau.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.