Ali Vafaei, Ahmad Vafaeian, Arad Iranmehr, Ehsan Nassireslami, Behnam Hasannezhad, Yasaman Hosseini
{"title":"β-谷甾醇对偏头痛诱发大鼠焦虑的影响:氧化/亚硝基应激和线粒体功能的作用","authors":"Ali Vafaei, Ahmad Vafaeian, Arad Iranmehr, Ehsan Nassireslami, Behnam Hasannezhad, Yasaman Hosseini","doi":"10.1111/cns.14892","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>Anxiety often coexists with migraine, and both conditions share a commonality in oxidative/nitrosative stress and mitochondrial dysfunction contributing to their pathogenesis. β-Sitosterol, a plant sterol, has shown promise in mitigating oxidative/nitrosative stress, enhancing mitochondrial function, and exerting neuroprotective effects. In this study, we investigated the impact of β-sitosterol on migraine-associated anxiety and whether this effect was associated with alleviation of oxidative/nitrosative stress and improvement in mitochondrial function.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Nitroglycerin was used to induce migraine in adult male Wistar rats. β-Sitosterol treatment consisted of daily intraperitoneal injections (10 mg/kg) for 10 days following migraine induction. Anxiety levels were evaluated using open-field test (OFT) and hole-board test (HBT). Frontal cortex samples were analyzed for malondialdehyde (MDA), glutathione (GSH), reactive oxygen/nitrogen species, nitric oxide (NO) (markers of oxidative/nitrosative stress), and ATP (indicator of mitochondrial function).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Migraine induction led to impaired performance in both the OFT and the HBT. Concurrently, it elevated MDA, reactive oxygen/nitrogen species, and NO levels while diminishing GSH levels in the frontal cortex, signifying heightened oxidative/nitrosative stress. Moreover, ATP levels decreased, indicating mitochondrial dysfunction. Treatment with β-sitosterol significantly restored performance in both behavioral assays and normalized the levels of MDA, GSH, reactive oxygen/nitrogen species, NO, and ATP.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>β-Sitosterol exerted anxiolytic effects in migraine, which can be attributed to its ability to ameliorate oxidative/nitrosative stress and enhance mitochondrial function.</p>\n </section>\n </div>","PeriodicalId":154,"journal":{"name":"CNS Neuroscience & Therapeutics","volume":"30 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cns.14892","citationCount":"0","resultStr":"{\"title\":\"Effects of β-sitosterol on anxiety in migraine-induced rats: The role of oxidative/nitrosative stress and mitochondrial function\",\"authors\":\"Ali Vafaei, Ahmad Vafaeian, Arad Iranmehr, Ehsan Nassireslami, Behnam Hasannezhad, Yasaman Hosseini\",\"doi\":\"10.1111/cns.14892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aims</h3>\\n \\n <p>Anxiety often coexists with migraine, and both conditions share a commonality in oxidative/nitrosative stress and mitochondrial dysfunction contributing to their pathogenesis. β-Sitosterol, a plant sterol, has shown promise in mitigating oxidative/nitrosative stress, enhancing mitochondrial function, and exerting neuroprotective effects. In this study, we investigated the impact of β-sitosterol on migraine-associated anxiety and whether this effect was associated with alleviation of oxidative/nitrosative stress and improvement in mitochondrial function.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Nitroglycerin was used to induce migraine in adult male Wistar rats. β-Sitosterol treatment consisted of daily intraperitoneal injections (10 mg/kg) for 10 days following migraine induction. Anxiety levels were evaluated using open-field test (OFT) and hole-board test (HBT). Frontal cortex samples were analyzed for malondialdehyde (MDA), glutathione (GSH), reactive oxygen/nitrogen species, nitric oxide (NO) (markers of oxidative/nitrosative stress), and ATP (indicator of mitochondrial function).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Migraine induction led to impaired performance in both the OFT and the HBT. Concurrently, it elevated MDA, reactive oxygen/nitrogen species, and NO levels while diminishing GSH levels in the frontal cortex, signifying heightened oxidative/nitrosative stress. Moreover, ATP levels decreased, indicating mitochondrial dysfunction. Treatment with β-sitosterol significantly restored performance in both behavioral assays and normalized the levels of MDA, GSH, reactive oxygen/nitrogen species, NO, and ATP.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>β-Sitosterol exerted anxiolytic effects in migraine, which can be attributed to its ability to ameliorate oxidative/nitrosative stress and enhance mitochondrial function.</p>\\n </section>\\n </div>\",\"PeriodicalId\":154,\"journal\":{\"name\":\"CNS Neuroscience & Therapeutics\",\"volume\":\"30 9\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cns.14892\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CNS Neuroscience & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cns.14892\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS Neuroscience & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cns.14892","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Effects of β-sitosterol on anxiety in migraine-induced rats: The role of oxidative/nitrosative stress and mitochondrial function
Aims
Anxiety often coexists with migraine, and both conditions share a commonality in oxidative/nitrosative stress and mitochondrial dysfunction contributing to their pathogenesis. β-Sitosterol, a plant sterol, has shown promise in mitigating oxidative/nitrosative stress, enhancing mitochondrial function, and exerting neuroprotective effects. In this study, we investigated the impact of β-sitosterol on migraine-associated anxiety and whether this effect was associated with alleviation of oxidative/nitrosative stress and improvement in mitochondrial function.
Methods
Nitroglycerin was used to induce migraine in adult male Wistar rats. β-Sitosterol treatment consisted of daily intraperitoneal injections (10 mg/kg) for 10 days following migraine induction. Anxiety levels were evaluated using open-field test (OFT) and hole-board test (HBT). Frontal cortex samples were analyzed for malondialdehyde (MDA), glutathione (GSH), reactive oxygen/nitrogen species, nitric oxide (NO) (markers of oxidative/nitrosative stress), and ATP (indicator of mitochondrial function).
Results
Migraine induction led to impaired performance in both the OFT and the HBT. Concurrently, it elevated MDA, reactive oxygen/nitrogen species, and NO levels while diminishing GSH levels in the frontal cortex, signifying heightened oxidative/nitrosative stress. Moreover, ATP levels decreased, indicating mitochondrial dysfunction. Treatment with β-sitosterol significantly restored performance in both behavioral assays and normalized the levels of MDA, GSH, reactive oxygen/nitrogen species, NO, and ATP.
Conclusion
β-Sitosterol exerted anxiolytic effects in migraine, which can be attributed to its ability to ameliorate oxidative/nitrosative stress and enhance mitochondrial function.
期刊介绍:
CNS Neuroscience & Therapeutics provides a medium for rapid publication of original clinical, experimental, and translational research papers, timely reviews and reports of novel findings of therapeutic relevance to the central nervous system, as well as papers related to clinical pharmacology, drug development and novel methodologies for drug evaluation. The journal focuses on neurological and psychiatric diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, depression, schizophrenia, epilepsy, and drug abuse.