{"title":"在几乎所有素数上具有无限周群的 Q ¯$overline{\\mathbb {Q}}$ 上的变项","authors":"Federico Scavia","doi":"10.1112/jlms.12994","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> be the Fermat cubic curve over <span></span><math>\n <semantics>\n <mover>\n <mi>Q</mi>\n <mo>¯</mo>\n </mover>\n <annotation>$\\overline{\\mathbb {Q}}$</annotation>\n </semantics></math>. In 2002, Schoen proved that the group <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mn>3</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <mi>ℓ</mi>\n </mrow>\n <annotation>$CH^2(E^3)/\\ell$</annotation>\n </semantics></math> is infinite for all primes <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>≡</mo>\n <mn>1</mn>\n <mspace></mspace>\n <mo>(</mo>\n <mi>mod</mi>\n <mspace></mspace>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$\\ell \\equiv 1\\pmod 3$</annotation>\n </semantics></math>. We show that <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mn>3</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <mi>ℓ</mi>\n </mrow>\n <annotation>$CH^2(E^3)/\\ell$</annotation>\n </semantics></math> is infinite for all prime numbers <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>></mo>\n <mn>5</mn>\n </mrow>\n <annotation>$\\ell &gt; 5$</annotation>\n </semantics></math>. This gives the first example of a smooth projective variety <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> over <span></span><math>\n <semantics>\n <mover>\n <mi>Q</mi>\n <mo>¯</mo>\n </mover>\n <annotation>$\\overline{\\mathbb {Q}}$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <mi>ℓ</mi>\n </mrow>\n <annotation>$CH^2(X)/\\ell$</annotation>\n </semantics></math> is infinite for all but at most finitely many primes <span></span><math>\n <semantics>\n <mi>ℓ</mi>\n <annotation>$\\ell$</annotation>\n </semantics></math>. A key tool is a recent theorem of Farb–Kisin–Wolfson, whose proof uses the prismatic cohomology of Bhatt–Scholze.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Varieties over \\n \\n \\n Q\\n ¯\\n \\n $\\\\overline{\\\\mathbb {Q}}$\\n with infinite Chow groups modulo almost all primes\",\"authors\":\"Federico Scavia\",\"doi\":\"10.1112/jlms.12994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$E$</annotation>\\n </semantics></math> be the Fermat cubic curve over <span></span><math>\\n <semantics>\\n <mover>\\n <mi>Q</mi>\\n <mo>¯</mo>\\n </mover>\\n <annotation>$\\\\overline{\\\\mathbb {Q}}$</annotation>\\n </semantics></math>. In 2002, Schoen proved that the group <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>E</mi>\\n <mn>3</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <mo>/</mo>\\n <mi>ℓ</mi>\\n </mrow>\\n <annotation>$CH^2(E^3)/\\\\ell$</annotation>\\n </semantics></math> is infinite for all primes <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>≡</mo>\\n <mn>1</mn>\\n <mspace></mspace>\\n <mo>(</mo>\\n <mi>mod</mi>\\n <mspace></mspace>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\ell \\\\equiv 1\\\\pmod 3$</annotation>\\n </semantics></math>. We show that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>E</mi>\\n <mn>3</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <mo>/</mo>\\n <mi>ℓ</mi>\\n </mrow>\\n <annotation>$CH^2(E^3)/\\\\ell$</annotation>\\n </semantics></math> is infinite for all prime numbers <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>></mo>\\n <mn>5</mn>\\n </mrow>\\n <annotation>$\\\\ell &gt; 5$</annotation>\\n </semantics></math>. This gives the first example of a smooth projective variety <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> over <span></span><math>\\n <semantics>\\n <mover>\\n <mi>Q</mi>\\n <mo>¯</mo>\\n </mover>\\n <annotation>$\\\\overline{\\\\mathbb {Q}}$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>/</mo>\\n <mi>ℓ</mi>\\n </mrow>\\n <annotation>$CH^2(X)/\\\\ell$</annotation>\\n </semantics></math> is infinite for all but at most finitely many primes <span></span><math>\\n <semantics>\\n <mi>ℓ</mi>\\n <annotation>$\\\\ell$</annotation>\\n </semantics></math>. A key tool is a recent theorem of Farb–Kisin–Wolfson, whose proof uses the prismatic cohomology of Bhatt–Scholze.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12994\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12994","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 E $E$ 是 Q ¯ $\overline{\mathbb {Q}}$ 上的费马三次曲线。2002 年,Schoen 证明了群 C H 2 ( E 3 ) / ℓ $CH^2(E^3)/\ell$ 对于所有素数 ℓ ≡ 1 ( mod 3 ) $ell \equiv 1\pmod 3$ 都是无限的。我们证明 C H 2 ( E 3 ) / ℓ $CH^2(E^3)/\ell$ 对于所有素数 ℓ > 5 $\ell > 5$ 都是无限的。这给出了第一个在 Q ¯ $\overline\{mathbb {Q}}$ 上的光滑射影 variety X $X$ 的例子,使得 C H 2 ( X ) / ℓ $CH^2(X)/\ell$ 对所有素数都是无限的,但最多只有有限多个素数 ℓ $\ell$ 。法布-基辛-沃尔夫森(Farb-Kisin-Wolfson)的最新定理是一个关键工具,它的证明使用了巴特-肖尔泽(Bhatt-Scholze)的棱镜同调。
Varieties over
Q
¯
$\overline{\mathbb {Q}}$
with infinite Chow groups modulo almost all primes
Let be the Fermat cubic curve over . In 2002, Schoen proved that the group is infinite for all primes . We show that is infinite for all prime numbers . This gives the first example of a smooth projective variety over such that is infinite for all but at most finitely many primes . A key tool is a recent theorem of Farb–Kisin–Wolfson, whose proof uses the prismatic cohomology of Bhatt–Scholze.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.