具有不可分割度量的可数紧密对偶球

IF 1 2区 数学 Q1 MATHEMATICS
Piotr Koszmider, Zdeněk Silber
{"title":"具有不可分割度量的可数紧密对偶球","authors":"Piotr Koszmider,&nbsp;Zdeněk Silber","doi":"10.1112/jlms.12988","DOIUrl":null,"url":null,"abstract":"<p>We construct a compact Hausdorff space <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> such that the space <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$P(K)$</annotation>\n </semantics></math> of Radon probability measures on <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> considered with the <span></span><math>\n <semantics>\n <msup>\n <mtext>weak</mtext>\n <mo>∗</mo>\n </msup>\n <annotation>$\\text{weak}^*$</annotation>\n </semantics></math> topology (induced from the space of continuous functions <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$C(K)$</annotation>\n </semantics></math>) is countably tight that is a generalization of sequentiality (i.e., if a measure <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math> is in the closure of a set <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>, there is a countable <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>M</mi>\n <mo>′</mo>\n </msup>\n <mo>⊆</mo>\n <mi>M</mi>\n </mrow>\n <annotation>$M^{\\prime }\\subseteq M$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math> is in the closure of <span></span><math>\n <semantics>\n <msup>\n <mi>M</mi>\n <mo>′</mo>\n </msup>\n <annotation>$M^{\\prime }$</annotation>\n </semantics></math>) but <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> carries a Radon probability measure that has uncountable Maharam type (i.e., <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>μ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L_1(\\mu)$</annotation>\n </semantics></math> is nonseparable). The construction uses (necessarily) an additional set-theoretic assumption (the <span></span><math>\n <semantics>\n <mo>◇</mo>\n <annotation>$\\diamondsuit$</annotation>\n </semantics></math> principle) as it was already known, by a result of Fremlin, that it is consistent that such spaces do not exist. This should be compared with the result of Plebanek and Sobota who showed that countable tightness of <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>×</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$P(K\\times K)$</annotation>\n </semantics></math> implies that all Radon measures on <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> have countable type. So, our example shows that the tightness of <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>×</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$P(K\\times K)$</annotation>\n </semantics></math> and of <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n <mo>×</mo>\n <mi>P</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$P(K)\\times P(K)$</annotation>\n </semantics></math> can be different as well as <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$P(K)$</annotation>\n </semantics></math> may have Corson property (C), while <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>×</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$P(K\\times K)$</annotation>\n </semantics></math> fails to have it answering a question of Pol. Our construction is also a relevant example in the general context of injective tensor products of Banach spaces complementing recent results of Avilés, Martínez-Cervantes, Rodríguez, and Rueda Zoca.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Countably tight dual ball with a nonseparable measure\",\"authors\":\"Piotr Koszmider,&nbsp;Zdeněk Silber\",\"doi\":\"10.1112/jlms.12988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct a compact Hausdorff space <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> such that the space <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$P(K)$</annotation>\\n </semantics></math> of Radon probability measures on <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> considered with the <span></span><math>\\n <semantics>\\n <msup>\\n <mtext>weak</mtext>\\n <mo>∗</mo>\\n </msup>\\n <annotation>$\\\\text{weak}^*$</annotation>\\n </semantics></math> topology (induced from the space of continuous functions <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$C(K)$</annotation>\\n </semantics></math>) is countably tight that is a generalization of sequentiality (i.e., if a measure <span></span><math>\\n <semantics>\\n <mi>μ</mi>\\n <annotation>$\\\\mu$</annotation>\\n </semantics></math> is in the closure of a set <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math>, there is a countable <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>M</mi>\\n <mo>′</mo>\\n </msup>\\n <mo>⊆</mo>\\n <mi>M</mi>\\n </mrow>\\n <annotation>$M^{\\\\prime }\\\\subseteq M$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mi>μ</mi>\\n <annotation>$\\\\mu$</annotation>\\n </semantics></math> is in the closure of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>M</mi>\\n <mo>′</mo>\\n </msup>\\n <annotation>$M^{\\\\prime }$</annotation>\\n </semantics></math>) but <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> carries a Radon probability measure that has uncountable Maharam type (i.e., <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>μ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L_1(\\\\mu)$</annotation>\\n </semantics></math> is nonseparable). The construction uses (necessarily) an additional set-theoretic assumption (the <span></span><math>\\n <semantics>\\n <mo>◇</mo>\\n <annotation>$\\\\diamondsuit$</annotation>\\n </semantics></math> principle) as it was already known, by a result of Fremlin, that it is consistent that such spaces do not exist. This should be compared with the result of Plebanek and Sobota who showed that countable tightness of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>×</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$P(K\\\\times K)$</annotation>\\n </semantics></math> implies that all Radon measures on <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> have countable type. So, our example shows that the tightness of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>×</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$P(K\\\\times K)$</annotation>\\n </semantics></math> and of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n <mo>×</mo>\\n <mi>P</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$P(K)\\\\times P(K)$</annotation>\\n </semantics></math> can be different as well as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$P(K)$</annotation>\\n </semantics></math> may have Corson property (C), while <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>×</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$P(K\\\\times K)$</annotation>\\n </semantics></math> fails to have it answering a question of Pol. Our construction is also a relevant example in the general context of injective tensor products of Banach spaces complementing recent results of Avilés, Martínez-Cervantes, Rodríguez, and Rueda Zoca.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"110 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12988\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12988","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

We construct a compact Hausdorff space K $K$ such that the space P ( K ) $P(K)$ of Radon probability measures on K $K$ considered with the weak ∗ $\text{weak}^*$ topology (induced from the space of continuous functions C ( K ) $C(K)$ ) is countably tight that is a generalization of sequentiality (i.e., if a measure μ $\mu$ is in the closure of a set M $M$ , there is a countable M ′ ⊆ M $M^{\prime }\subseteq M$ such that μ $\mu$ is in the closure of M ′ $M^{\prime }$ ) but K $K$ carries a Radon probability measure that has uncountable Maharam type (i.e., L 1 ( μ ) $L_1(\mu)$ is nonseparable).这个构造(必然)使用了一个额外的集合论假设(◇ $\diamondsuit$ 原则),因为根据弗雷姆林的一个结果,我们已经知道这样的空间是不存在的。这应该与普莱巴内克和索博塔的结果相比较,他们证明了 P ( K × K ) $P(K\times K)$ 的可数紧密性意味着 K $K$ 上的所有拉顿量都具有可数类型。因此,我们的例子表明,P ( K × K ) $P(K\times K)$ 和 P ( K ) × P ( K ) $P(K)\times P(K)$ 的紧密性可能不同,P ( K ) $P(K)$ 可能具有 Corson 性质 (C),而 P ( K × K ) $P(K\times K)$ 则不具有,这回答了一个 Pol 问题。我们的构造也是巴拿赫空间注入张量积一般背景下的一个相关例子,补充了阿维莱斯、马丁内斯-塞万提斯、罗德里格斯和鲁埃达-佐卡的最新成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Countably tight dual ball with a nonseparable measure

We construct a compact Hausdorff space K $K$ such that the space P ( K ) $P(K)$ of Radon probability measures on K $K$ considered with the weak $\text{weak}^*$ topology (induced from the space of continuous functions C ( K ) $C(K)$ ) is countably tight that is a generalization of sequentiality (i.e., if a measure μ $\mu$ is in the closure of a set M $M$ , there is a countable M M $M^{\prime }\subseteq M$ such that μ $\mu$ is in the closure of M $M^{\prime }$ ) but K $K$ carries a Radon probability measure that has uncountable Maharam type (i.e., L 1 ( μ ) $L_1(\mu)$ is nonseparable). The construction uses (necessarily) an additional set-theoretic assumption (the $\diamondsuit$ principle) as it was already known, by a result of Fremlin, that it is consistent that such spaces do not exist. This should be compared with the result of Plebanek and Sobota who showed that countable tightness of P ( K × K ) $P(K\times K)$ implies that all Radon measures on K $K$ have countable type. So, our example shows that the tightness of P ( K × K ) $P(K\times K)$ and of P ( K ) × P ( K ) $P(K)\times P(K)$ can be different as well as P ( K ) $P(K)$ may have Corson property (C), while P ( K × K ) $P(K\times K)$ fails to have it answering a question of Pol. Our construction is also a relevant example in the general context of injective tensor products of Banach spaces complementing recent results of Avilés, Martínez-Cervantes, Rodríguez, and Rueda Zoca.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信