具有不可分割度量的可数紧密对偶球

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Piotr Koszmider, Zdeněk Silber
{"title":"具有不可分割度量的可数紧密对偶球","authors":"Piotr Koszmider,&nbsp;Zdeněk Silber","doi":"10.1112/jlms.12988","DOIUrl":null,"url":null,"abstract":"<p>We construct a compact Hausdorff space <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> such that the space <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$P(K)$</annotation>\n </semantics></math> of Radon probability measures on <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> considered with the <span></span><math>\n <semantics>\n <msup>\n <mtext>weak</mtext>\n <mo>∗</mo>\n </msup>\n <annotation>$\\text{weak}^*$</annotation>\n </semantics></math> topology (induced from the space of continuous functions <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$C(K)$</annotation>\n </semantics></math>) is countably tight that is a generalization of sequentiality (i.e., if a measure <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math> is in the closure of a set <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>, there is a countable <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>M</mi>\n <mo>′</mo>\n </msup>\n <mo>⊆</mo>\n <mi>M</mi>\n </mrow>\n <annotation>$M^{\\prime }\\subseteq M$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math> is in the closure of <span></span><math>\n <semantics>\n <msup>\n <mi>M</mi>\n <mo>′</mo>\n </msup>\n <annotation>$M^{\\prime }$</annotation>\n </semantics></math>) but <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> carries a Radon probability measure that has uncountable Maharam type (i.e., <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>μ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L_1(\\mu)$</annotation>\n </semantics></math> is nonseparable). The construction uses (necessarily) an additional set-theoretic assumption (the <span></span><math>\n <semantics>\n <mo>◇</mo>\n <annotation>$\\diamondsuit$</annotation>\n </semantics></math> principle) as it was already known, by a result of Fremlin, that it is consistent that such spaces do not exist. This should be compared with the result of Plebanek and Sobota who showed that countable tightness of <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>×</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$P(K\\times K)$</annotation>\n </semantics></math> implies that all Radon measures on <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> have countable type. So, our example shows that the tightness of <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>×</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$P(K\\times K)$</annotation>\n </semantics></math> and of <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n <mo>×</mo>\n <mi>P</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$P(K)\\times P(K)$</annotation>\n </semantics></math> can be different as well as <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$P(K)$</annotation>\n </semantics></math> may have Corson property (C), while <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>×</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$P(K\\times K)$</annotation>\n </semantics></math> fails to have it answering a question of Pol. Our construction is also a relevant example in the general context of injective tensor products of Banach spaces complementing recent results of Avilés, Martínez-Cervantes, Rodríguez, and Rueda Zoca.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Countably tight dual ball with a nonseparable measure\",\"authors\":\"Piotr Koszmider,&nbsp;Zdeněk Silber\",\"doi\":\"10.1112/jlms.12988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct a compact Hausdorff space <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> such that the space <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$P(K)$</annotation>\\n </semantics></math> of Radon probability measures on <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> considered with the <span></span><math>\\n <semantics>\\n <msup>\\n <mtext>weak</mtext>\\n <mo>∗</mo>\\n </msup>\\n <annotation>$\\\\text{weak}^*$</annotation>\\n </semantics></math> topology (induced from the space of continuous functions <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$C(K)$</annotation>\\n </semantics></math>) is countably tight that is a generalization of sequentiality (i.e., if a measure <span></span><math>\\n <semantics>\\n <mi>μ</mi>\\n <annotation>$\\\\mu$</annotation>\\n </semantics></math> is in the closure of a set <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math>, there is a countable <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>M</mi>\\n <mo>′</mo>\\n </msup>\\n <mo>⊆</mo>\\n <mi>M</mi>\\n </mrow>\\n <annotation>$M^{\\\\prime }\\\\subseteq M$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mi>μ</mi>\\n <annotation>$\\\\mu$</annotation>\\n </semantics></math> is in the closure of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>M</mi>\\n <mo>′</mo>\\n </msup>\\n <annotation>$M^{\\\\prime }$</annotation>\\n </semantics></math>) but <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> carries a Radon probability measure that has uncountable Maharam type (i.e., <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>μ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L_1(\\\\mu)$</annotation>\\n </semantics></math> is nonseparable). The construction uses (necessarily) an additional set-theoretic assumption (the <span></span><math>\\n <semantics>\\n <mo>◇</mo>\\n <annotation>$\\\\diamondsuit$</annotation>\\n </semantics></math> principle) as it was already known, by a result of Fremlin, that it is consistent that such spaces do not exist. This should be compared with the result of Plebanek and Sobota who showed that countable tightness of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>×</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$P(K\\\\times K)$</annotation>\\n </semantics></math> implies that all Radon measures on <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> have countable type. So, our example shows that the tightness of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>×</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$P(K\\\\times K)$</annotation>\\n </semantics></math> and of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n <mo>×</mo>\\n <mi>P</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$P(K)\\\\times P(K)$</annotation>\\n </semantics></math> can be different as well as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$P(K)$</annotation>\\n </semantics></math> may have Corson property (C), while <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>×</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$P(K\\\\times K)$</annotation>\\n </semantics></math> fails to have it answering a question of Pol. Our construction is also a relevant example in the general context of injective tensor products of Banach spaces complementing recent results of Avilés, Martínez-Cervantes, Rodríguez, and Rueda Zoca.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12988\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12988","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

We construct a compact Hausdorff space K $K$ such that the space P ( K ) $P(K)$ of Radon probability measures on K $K$ considered with the weak ∗ $\text{weak}^*$ topology (induced from the space of continuous functions C ( K ) $C(K)$ ) is countably tight that is a generalization of sequentiality (i.e., if a measure μ $\mu$ is in the closure of a set M $M$ , there is a countable M ′ ⊆ M $M^{\prime }\subseteq M$ such that μ $\mu$ is in the closure of M ′ $M^{\prime }$ ) but K $K$ carries a Radon probability measure that has uncountable Maharam type (i.e., L 1 ( μ ) $L_1(\mu)$ is nonseparable).这个构造(必然)使用了一个额外的集合论假设(◇ $\diamondsuit$ 原则),因为根据弗雷姆林的一个结果,我们已经知道这样的空间是不存在的。这应该与普莱巴内克和索博塔的结果相比较,他们证明了 P ( K × K ) $P(K\times K)$ 的可数紧密性意味着 K $K$ 上的所有拉顿量都具有可数类型。因此,我们的例子表明,P ( K × K ) $P(K\times K)$ 和 P ( K ) × P ( K ) $P(K)\times P(K)$ 的紧密性可能不同,P ( K ) $P(K)$ 可能具有 Corson 性质 (C),而 P ( K × K ) $P(K\times K)$ 则不具有,这回答了一个 Pol 问题。我们的构造也是巴拿赫空间注入张量积一般背景下的一个相关例子,补充了阿维莱斯、马丁内斯-塞万提斯、罗德里格斯和鲁埃达-佐卡的最新成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Countably tight dual ball with a nonseparable measure

We construct a compact Hausdorff space K $K$ such that the space P ( K ) $P(K)$ of Radon probability measures on K $K$ considered with the weak $\text{weak}^*$ topology (induced from the space of continuous functions C ( K ) $C(K)$ ) is countably tight that is a generalization of sequentiality (i.e., if a measure μ $\mu$ is in the closure of a set M $M$ , there is a countable M M $M^{\prime }\subseteq M$ such that μ $\mu$ is in the closure of M $M^{\prime }$ ) but K $K$ carries a Radon probability measure that has uncountable Maharam type (i.e., L 1 ( μ ) $L_1(\mu)$ is nonseparable). The construction uses (necessarily) an additional set-theoretic assumption (the $\diamondsuit$ principle) as it was already known, by a result of Fremlin, that it is consistent that such spaces do not exist. This should be compared with the result of Plebanek and Sobota who showed that countable tightness of P ( K × K ) $P(K\times K)$ implies that all Radon measures on K $K$ have countable type. So, our example shows that the tightness of P ( K × K ) $P(K\times K)$ and of P ( K ) × P ( K ) $P(K)\times P(K)$ can be different as well as P ( K ) $P(K)$ may have Corson property (C), while P ( K × K ) $P(K\times K)$ fails to have it answering a question of Pol. Our construction is also a relevant example in the general context of injective tensor products of Banach spaces complementing recent results of Avilés, Martínez-Cervantes, Rodríguez, and Rueda Zoca.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信