Neelesh Sharma , Manu Kumar , Hans D Daetwyler , Richard M Trethowan , Matthew Hayden , Surya Kant
{"title":"利用生理特征、多光谱图像和机器学习方法对小麦群体的热胁迫耐受性进行表型分析","authors":"Neelesh Sharma , Manu Kumar , Hans D Daetwyler , Richard M Trethowan , Matthew Hayden , Surya Kant","doi":"10.1016/j.stress.2024.100593","DOIUrl":null,"url":null,"abstract":"<div><p>Heat stress is a critical environmental factor that adversely affects crop productivity. With the increasing frequency and intensity of heat waves and extreme weather events, heat stress has become a challenge for wheat production, which is one of the most important cereal crops. To sustain wheat production under heat stress conditions, there is an urgent need to develop high-yielding, heat-tolerant wheat varieties. This requires characterizing the genetic and physiological mechanisms underlying heat tolerance, as well as developing efficient phenotyping methods to evaluate a large number of wheat genotypes under heat stress field conditions. In this study, we used 184 wheat genotypes that were sown at two times of sowing (TOS), i.e., optimal sowing as TOS1 and late sowing as TOS2, with higher temperatures faced by plants during heading and grain filling in TOS2. We used a combination of physiological traits, multispectral vegetative indices (VIs) derived from aerial imagery and machine learning approaches to effectively differentiate wheat genotypes for heat tolerance and susceptibility. The response of wheat genotypes to heat stress was delineated as being susceptible, moderate, and tolerant using the stress susceptibility index, percentage loss, and tolerance index. Different VIs varied significantly between the two TOS. The decline in VIs during anthesis and post-anthesis was minimal in heat tolerant genotypes compared to susceptible genotypes under TOS2. We classified the stress severity and yield using VIs with a machine learning approach. A model was created with a random forest classifier (RFC) trained to categorize genotypes based on the stress susceptibility index using Python libraries. The PCA was utilized to reduce dimensionality, and five principal components explaining 99 % of the variability were employed as input for developing the model. The RFC model achieved an accuracy of 64 % and excelled in recognizing crops under extreme stress, with a recall rate of 0.87 and an F1 score of 0.77 for the susceptible class. The model had high precision metrics, with values of 0.69, 0.42, and 0.80 for the susceptible, moderate, and tolerant classes, respectively. Our results suggest that multispectral-driven phenotypic traits can be used by breeders to select and develop wheat varieties tolerant to heat stress.</p></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100593"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667064X2400246X/pdfft?md5=f88f3edf48722b7bd61c036c909b6de7&pid=1-s2.0-S2667064X2400246X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Phenotyping for heat stress tolerance in wheat population using physiological traits, multispectral imagery, and machine learning approaches\",\"authors\":\"Neelesh Sharma , Manu Kumar , Hans D Daetwyler , Richard M Trethowan , Matthew Hayden , Surya Kant\",\"doi\":\"10.1016/j.stress.2024.100593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Heat stress is a critical environmental factor that adversely affects crop productivity. With the increasing frequency and intensity of heat waves and extreme weather events, heat stress has become a challenge for wheat production, which is one of the most important cereal crops. To sustain wheat production under heat stress conditions, there is an urgent need to develop high-yielding, heat-tolerant wheat varieties. This requires characterizing the genetic and physiological mechanisms underlying heat tolerance, as well as developing efficient phenotyping methods to evaluate a large number of wheat genotypes under heat stress field conditions. In this study, we used 184 wheat genotypes that were sown at two times of sowing (TOS), i.e., optimal sowing as TOS1 and late sowing as TOS2, with higher temperatures faced by plants during heading and grain filling in TOS2. We used a combination of physiological traits, multispectral vegetative indices (VIs) derived from aerial imagery and machine learning approaches to effectively differentiate wheat genotypes for heat tolerance and susceptibility. The response of wheat genotypes to heat stress was delineated as being susceptible, moderate, and tolerant using the stress susceptibility index, percentage loss, and tolerance index. Different VIs varied significantly between the two TOS. The decline in VIs during anthesis and post-anthesis was minimal in heat tolerant genotypes compared to susceptible genotypes under TOS2. We classified the stress severity and yield using VIs with a machine learning approach. A model was created with a random forest classifier (RFC) trained to categorize genotypes based on the stress susceptibility index using Python libraries. The PCA was utilized to reduce dimensionality, and five principal components explaining 99 % of the variability were employed as input for developing the model. The RFC model achieved an accuracy of 64 % and excelled in recognizing crops under extreme stress, with a recall rate of 0.87 and an F1 score of 0.77 for the susceptible class. The model had high precision metrics, with values of 0.69, 0.42, and 0.80 for the susceptible, moderate, and tolerant classes, respectively. Our results suggest that multispectral-driven phenotypic traits can be used by breeders to select and develop wheat varieties tolerant to heat stress.</p></div>\",\"PeriodicalId\":34736,\"journal\":{\"name\":\"Plant Stress\",\"volume\":\"14 \",\"pages\":\"Article 100593\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667064X2400246X/pdfft?md5=f88f3edf48722b7bd61c036c909b6de7&pid=1-s2.0-S2667064X2400246X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667064X2400246X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X2400246X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Phenotyping for heat stress tolerance in wheat population using physiological traits, multispectral imagery, and machine learning approaches
Heat stress is a critical environmental factor that adversely affects crop productivity. With the increasing frequency and intensity of heat waves and extreme weather events, heat stress has become a challenge for wheat production, which is one of the most important cereal crops. To sustain wheat production under heat stress conditions, there is an urgent need to develop high-yielding, heat-tolerant wheat varieties. This requires characterizing the genetic and physiological mechanisms underlying heat tolerance, as well as developing efficient phenotyping methods to evaluate a large number of wheat genotypes under heat stress field conditions. In this study, we used 184 wheat genotypes that were sown at two times of sowing (TOS), i.e., optimal sowing as TOS1 and late sowing as TOS2, with higher temperatures faced by plants during heading and grain filling in TOS2. We used a combination of physiological traits, multispectral vegetative indices (VIs) derived from aerial imagery and machine learning approaches to effectively differentiate wheat genotypes for heat tolerance and susceptibility. The response of wheat genotypes to heat stress was delineated as being susceptible, moderate, and tolerant using the stress susceptibility index, percentage loss, and tolerance index. Different VIs varied significantly between the two TOS. The decline in VIs during anthesis and post-anthesis was minimal in heat tolerant genotypes compared to susceptible genotypes under TOS2. We classified the stress severity and yield using VIs with a machine learning approach. A model was created with a random forest classifier (RFC) trained to categorize genotypes based on the stress susceptibility index using Python libraries. The PCA was utilized to reduce dimensionality, and five principal components explaining 99 % of the variability were employed as input for developing the model. The RFC model achieved an accuracy of 64 % and excelled in recognizing crops under extreme stress, with a recall rate of 0.87 and an F1 score of 0.77 for the susceptible class. The model had high precision metrics, with values of 0.69, 0.42, and 0.80 for the susceptible, moderate, and tolerant classes, respectively. Our results suggest that multispectral-driven phenotypic traits can be used by breeders to select and develop wheat varieties tolerant to heat stress.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.