分离铋合金钌上亚硝酸盐还原成氨的电催化作用

IF 13.1 1区 化学 Q1 Energy
{"title":"分离铋合金钌上亚硝酸盐还原成氨的电催化作用","authors":"","doi":"10.1016/j.jechem.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical reduction of NO<sub>2</sub><sup>−</sup> to NH<sub>3</sub> (NO<sub>2</sub><sup>−</sup>RR) is recognized as an appealing approach for achieving renewable NH<sub>3</sub> synthesis and waste NO<sub>2</sub><sup>−</sup> removal. Herein, we report isolated Bi alloyed Ru (Bi<sub>1</sub>Ru) as an efficient NO<sub>2</sub><sup>−</sup>RR catalyst. Theoretical calculations and in situ electrochemical measurements reveal the creation of Bi<sub>1</sub>-Ru dual sites which can remarkably promote NO<sub>2</sub><sup>−</sup> activation and suppress proton adsorption, while accelerating the NO<sub>2</sub><sup>−</sup>RR protonation energetics to render a high NO<sub>2</sub><sup>−</sup>-to-NH<sub>3</sub> conversion efficiency. Remarkably, Bi<sub>1</sub>Ru assembled in a flow cell delivers an NH<sub>3</sub> yield rate of 1901.4 μmol h<sup>−1</sup> cm<sup>−2</sup> and an NH<sub>3</sub>-Faradaic efficiency of 94.3% at an industrial-level current density of 324.3 mA cm<sup>−2</sup>. This study offers new perspectives for designing and constructing p-block single-atom alloys as robust and high-current-density NO<sub>2</sub><sup>−</sup>RR catalysts toward the ammonia electrosynthesis.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocatalytic nitrite reduction to ammonia on isolated bismuth alloyed ruthenium\",\"authors\":\"\",\"doi\":\"10.1016/j.jechem.2024.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrochemical reduction of NO<sub>2</sub><sup>−</sup> to NH<sub>3</sub> (NO<sub>2</sub><sup>−</sup>RR) is recognized as an appealing approach for achieving renewable NH<sub>3</sub> synthesis and waste NO<sub>2</sub><sup>−</sup> removal. Herein, we report isolated Bi alloyed Ru (Bi<sub>1</sub>Ru) as an efficient NO<sub>2</sub><sup>−</sup>RR catalyst. Theoretical calculations and in situ electrochemical measurements reveal the creation of Bi<sub>1</sub>-Ru dual sites which can remarkably promote NO<sub>2</sub><sup>−</sup> activation and suppress proton adsorption, while accelerating the NO<sub>2</sub><sup>−</sup>RR protonation energetics to render a high NO<sub>2</sub><sup>−</sup>-to-NH<sub>3</sub> conversion efficiency. Remarkably, Bi<sub>1</sub>Ru assembled in a flow cell delivers an NH<sub>3</sub> yield rate of 1901.4 μmol h<sup>−1</sup> cm<sup>−2</sup> and an NH<sub>3</sub>-Faradaic efficiency of 94.3% at an industrial-level current density of 324.3 mA cm<sup>−2</sup>. This study offers new perspectives for designing and constructing p-block single-atom alloys as robust and high-current-density NO<sub>2</sub><sup>−</sup>RR catalysts toward the ammonia electrosynthesis.</p></div>\",\"PeriodicalId\":15728,\"journal\":{\"name\":\"Journal of Energy Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495624006247\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624006247","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

电化学还原 NO2- 到 NH3(NO2-RR)被认为是实现可再生 NH3 合成和清除废弃 NO2- 的一种有吸引力的方法。在此,我们报告了作为高效 NO2-RR 催化剂的分离 Bi 合金 Ru(Bi1Ru)。理论计算和原位电化学测量显示,Bi1-Ru 双位点的产生可显著促进 NO2- 的活化并抑制质子的吸附,同时加速 NO2-RR 质子化的能量,从而实现 NO2- 到 NH3 的高转化效率。令人瞩目的是,在工业级电流密度 324.3 mA cm-2 下,装配在流动池中的 Bi1Ru 的 NH3 产率达到 1901.4 μmol h-1 cm-2,NH3-Faradaic 效率达到 94.3%。这项研究为设计和构建对嵌段单原子合金提供了新的视角,使其成为氨电合成过程中坚固耐用的高电流密度 NO2-RR 催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrocatalytic nitrite reduction to ammonia on isolated bismuth alloyed ruthenium

Electrocatalytic nitrite reduction to ammonia on isolated bismuth alloyed ruthenium

Electrochemical reduction of NO2 to NH3 (NO2RR) is recognized as an appealing approach for achieving renewable NH3 synthesis and waste NO2 removal. Herein, we report isolated Bi alloyed Ru (Bi1Ru) as an efficient NO2RR catalyst. Theoretical calculations and in situ electrochemical measurements reveal the creation of Bi1-Ru dual sites which can remarkably promote NO2 activation and suppress proton adsorption, while accelerating the NO2RR protonation energetics to render a high NO2-to-NH3 conversion efficiency. Remarkably, Bi1Ru assembled in a flow cell delivers an NH3 yield rate of 1901.4 μmol h−1 cm−2 and an NH3-Faradaic efficiency of 94.3% at an industrial-level current density of 324.3 mA cm−2. This study offers new perspectives for designing and constructing p-block single-atom alloys as robust and high-current-density NO2RR catalysts toward the ammonia electrosynthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信