提高固态电解质界面效率,打造切实可行的氢气-空气燃料电池系统

IF 13.1 1区 化学 Q1 Energy
{"title":"提高固态电解质界面效率,打造切实可行的氢气-空气燃料电池系统","authors":"","doi":"10.1016/j.jechem.2024.08.046","DOIUrl":null,"url":null,"abstract":"<div><p>Proton exchange membrane fuel cells (PEMFCs) provide an appealing sustainable energy system, with the solid-electrolyte membrane playing a crucial role in its overall performance. Currently, sulfonated poly(1,4-phenylene ether-ether sulfone) (SPEES), an aromatic hydrocarbon polymer, has garnered considerable attention as an alternative to Nafion polymers. However, the long-term durability and stability of SPEES present a significant challenge. In this context, we introduce a potential solution in the form of an additive, specifically a core–shell-based amine-functionalized iron titanate (A–Fe<sub>2</sub>TiO<sub>5</sub>), which holds promise for improving the lifetime, proton conductivity, and power density of SPEES in PEMFCs. The modified SPEES/A–Fe<sub>2</sub>TiO<sub>5</sub> composite membranes exhibited notable characteristics, including high water uptake, enhanced thermomechanical stability, and oxidative stability. Notably, the SPEES membrane loaded with 1.2 wt% of A–Fe<sub>2</sub>TiO<sub>5</sub> demonstrates a maximum proton conductivity of 155 mS cm<sup>−1</sup>, a twofold increase compared to the SPEES membrane, at 80 °C under 100% relative humidity (RH). Furthermore, the 1.2 wt% of A–Fe<sub>2</sub>TiO<sub>5</sub>/SPEES composite membranes exhibited a maximum power density of 397.37 mW cm<sup>−2</sup> and a current density of 1148 mA cm<sup>−2</sup> at 60 °C under 100% RH, with an open-circuit voltage decay of 0.05 mV/h during 103 h of continuous operation. This study offers significant insights into the development and understanding of innovative SPEES nanocomposite membranes for PEMFC applications.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced solid-electrolyte interface efficiency for practically viable hydrogen-air fuel cell systems\",\"authors\":\"\",\"doi\":\"10.1016/j.jechem.2024.08.046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Proton exchange membrane fuel cells (PEMFCs) provide an appealing sustainable energy system, with the solid-electrolyte membrane playing a crucial role in its overall performance. Currently, sulfonated poly(1,4-phenylene ether-ether sulfone) (SPEES), an aromatic hydrocarbon polymer, has garnered considerable attention as an alternative to Nafion polymers. However, the long-term durability and stability of SPEES present a significant challenge. In this context, we introduce a potential solution in the form of an additive, specifically a core–shell-based amine-functionalized iron titanate (A–Fe<sub>2</sub>TiO<sub>5</sub>), which holds promise for improving the lifetime, proton conductivity, and power density of SPEES in PEMFCs. The modified SPEES/A–Fe<sub>2</sub>TiO<sub>5</sub> composite membranes exhibited notable characteristics, including high water uptake, enhanced thermomechanical stability, and oxidative stability. Notably, the SPEES membrane loaded with 1.2 wt% of A–Fe<sub>2</sub>TiO<sub>5</sub> demonstrates a maximum proton conductivity of 155 mS cm<sup>−1</sup>, a twofold increase compared to the SPEES membrane, at 80 °C under 100% relative humidity (RH). Furthermore, the 1.2 wt% of A–Fe<sub>2</sub>TiO<sub>5</sub>/SPEES composite membranes exhibited a maximum power density of 397.37 mW cm<sup>−2</sup> and a current density of 1148 mA cm<sup>−2</sup> at 60 °C under 100% RH, with an open-circuit voltage decay of 0.05 mV/h during 103 h of continuous operation. This study offers significant insights into the development and understanding of innovative SPEES nanocomposite membranes for PEMFC applications.</p></div>\",\"PeriodicalId\":15728,\"journal\":{\"name\":\"Journal of Energy Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495624006028\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624006028","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜燃料电池(PEMFC)是一种极具吸引力的可持续能源系统,其中固体电解质膜对其整体性能起着至关重要的作用。目前,磺化聚(1,4-苯基醚砜)(SPEES)这种芳香烃聚合物作为 Nafion 聚合物的替代品受到了广泛关注。然而,SPEES 的长期耐久性和稳定性是一个重大挑战。在这种情况下,我们引入了一种添加剂形式的潜在解决方案,特别是一种基于核壳的胺功能化钛酸铁(A-Fe2TiO5),它有望改善 PEMFC 中 SPEES 的使用寿命、质子传导性和功率密度。改性后的 SPEES/A-Fe2TiO5 复合膜表现出显著的特性,包括高吸水性、增强的热机械稳定性和氧化稳定性。值得注意的是,在相对湿度(RH)为 100%、温度为 80℃的条件下,负载了 1.2 wt% A-Fe2TiO5 的 SPEES 膜的最大质子传导率为 155 mS cm-1,比 SPEES 膜提高了两倍。此外,1.2 wt% 的 A-Fe2TiO5/SPEES 复合膜在 60 °C、100% 相对湿度条件下的最大功率密度为 397.37 mW cm-2,电流密度为 1148 mA cm-2,连续运行 103 小时的开路电压衰减为 0.05 mV/h。这项研究为开发和了解用于 PEMFC 应用的创新型 SPEES 纳米复合膜提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced solid-electrolyte interface efficiency for practically viable hydrogen-air fuel cell systems

Enhanced solid-electrolyte interface efficiency for practically viable hydrogen-air fuel cell systems

Proton exchange membrane fuel cells (PEMFCs) provide an appealing sustainable energy system, with the solid-electrolyte membrane playing a crucial role in its overall performance. Currently, sulfonated poly(1,4-phenylene ether-ether sulfone) (SPEES), an aromatic hydrocarbon polymer, has garnered considerable attention as an alternative to Nafion polymers. However, the long-term durability and stability of SPEES present a significant challenge. In this context, we introduce a potential solution in the form of an additive, specifically a core–shell-based amine-functionalized iron titanate (A–Fe2TiO5), which holds promise for improving the lifetime, proton conductivity, and power density of SPEES in PEMFCs. The modified SPEES/A–Fe2TiO5 composite membranes exhibited notable characteristics, including high water uptake, enhanced thermomechanical stability, and oxidative stability. Notably, the SPEES membrane loaded with 1.2 wt% of A–Fe2TiO5 demonstrates a maximum proton conductivity of 155 mS cm−1, a twofold increase compared to the SPEES membrane, at 80 °C under 100% relative humidity (RH). Furthermore, the 1.2 wt% of A–Fe2TiO5/SPEES composite membranes exhibited a maximum power density of 397.37 mW cm−2 and a current density of 1148 mA cm−2 at 60 °C under 100% RH, with an open-circuit voltage decay of 0.05 mV/h during 103 h of continuous operation. This study offers significant insights into the development and understanding of innovative SPEES nanocomposite membranes for PEMFC applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信