Heqi Gao , Jiayi Zhang , Guijuan Zhang , Chengming Zhang , Zena Tian , Dianjie Lu
{"title":"网络物理社会的异质情绪传染","authors":"Heqi Gao , Jiayi Zhang , Guijuan Zhang , Chengming Zhang , Zena Tian , Dianjie Lu","doi":"10.1016/j.jksuci.2024.102193","DOIUrl":null,"url":null,"abstract":"<div><p>When emergencies occur, panic spreads quickly across cyberspace and physical space. Despite widespread attention to emotional contagion in cyber–physical societies (CPS), existing studies often overlook individual relationship heterogeneity, which results in imprecise models. To address this issue, we propose a heterogeneous emotional contagion method for CPS. First, we introduce the Strong–Weak Emotional Contagion Model (SW-ECM) to simulate the heterogeneous emotional contagion process in CPS. Second, we formulate the mean-field equations for the SW-ECM to accurately capture the dynamic evolution of heterogeneous emotional contagion in the CPS. Finally, we construct a small-world network based on strong–weak relationships to validate the effectiveness of our method. The experimental results show that our method can effectively simulate the heterogeneous emotional contagion and capture changes in relationships between individuals, providing valuable guidance for crowd evacuations prone to emotional contagion.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002829/pdfft?md5=f933d896a76a94be422b19df9a07b8ff&pid=1-s2.0-S1319157824002829-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous emotional contagion of the cyber–physical society\",\"authors\":\"Heqi Gao , Jiayi Zhang , Guijuan Zhang , Chengming Zhang , Zena Tian , Dianjie Lu\",\"doi\":\"10.1016/j.jksuci.2024.102193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When emergencies occur, panic spreads quickly across cyberspace and physical space. Despite widespread attention to emotional contagion in cyber–physical societies (CPS), existing studies often overlook individual relationship heterogeneity, which results in imprecise models. To address this issue, we propose a heterogeneous emotional contagion method for CPS. First, we introduce the Strong–Weak Emotional Contagion Model (SW-ECM) to simulate the heterogeneous emotional contagion process in CPS. Second, we formulate the mean-field equations for the SW-ECM to accurately capture the dynamic evolution of heterogeneous emotional contagion in the CPS. Finally, we construct a small-world network based on strong–weak relationships to validate the effectiveness of our method. The experimental results show that our method can effectively simulate the heterogeneous emotional contagion and capture changes in relationships between individuals, providing valuable guidance for crowd evacuations prone to emotional contagion.</p></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002829/pdfft?md5=f933d896a76a94be422b19df9a07b8ff&pid=1-s2.0-S1319157824002829-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002829\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002829","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Heterogeneous emotional contagion of the cyber–physical society
When emergencies occur, panic spreads quickly across cyberspace and physical space. Despite widespread attention to emotional contagion in cyber–physical societies (CPS), existing studies often overlook individual relationship heterogeneity, which results in imprecise models. To address this issue, we propose a heterogeneous emotional contagion method for CPS. First, we introduce the Strong–Weak Emotional Contagion Model (SW-ECM) to simulate the heterogeneous emotional contagion process in CPS. Second, we formulate the mean-field equations for the SW-ECM to accurately capture the dynamic evolution of heterogeneous emotional contagion in the CPS. Finally, we construct a small-world network based on strong–weak relationships to validate the effectiveness of our method. The experimental results show that our method can effectively simulate the heterogeneous emotional contagion and capture changes in relationships between individuals, providing valuable guidance for crowd evacuations prone to emotional contagion.
期刊介绍:
In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.