利用电子光学距离传感器进行弹性成像,定量测量流量对鼻瓣膜功能的影响。试点研究

IF 2.4 3区 医学 Q3 BIOPHYSICS
{"title":"利用电子光学距离传感器进行弹性成像,定量测量流量对鼻瓣膜功能的影响。试点研究","authors":"","doi":"10.1016/j.jbiomech.2024.112326","DOIUrl":null,"url":null,"abstract":"<div><p>Nasal valve function depends on the intensity of the inspiratory nasal airflow, the geometry of the nasal entrance and the mechanical properties of the lateral nasal wall. It is desirable to obtain objective information on the relation between flow and valve movement. In this study, the deflection of the lateral nasal wall and the inspiratory flow were measured on 30 healthy volunteers, aged 18 to 82 without a history of severe trauma or nasal surgery. Electro-optical distance sensors were housed under a full-face protective mask attached to an analogue inspiratory flowmeter. The mean values for normal breathing were assessed at 675 [cm<sup>3</sup>/s] for the bilateral flow and −0.57 mm for the total movement. With forced breathing, the mean values for the flow of both nostrils were found to be 1434 cm<sup>3</sup>/s and for the total movement −1.21 mm. Statistically significant differences between normal and forced breathing were found in all participants and in both sexes, but no significant correlation by age. Electro-optical distance measurement, representing a novel technical way for the ‘elastography’ of the nasal valve should be added to advanced 4-phase-rhinomanometers.</p></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative measurement of the flow depending nasal valve function by elastography with electro-optical distance sensors. A pilot study\",\"authors\":\"\",\"doi\":\"10.1016/j.jbiomech.2024.112326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nasal valve function depends on the intensity of the inspiratory nasal airflow, the geometry of the nasal entrance and the mechanical properties of the lateral nasal wall. It is desirable to obtain objective information on the relation between flow and valve movement. In this study, the deflection of the lateral nasal wall and the inspiratory flow were measured on 30 healthy volunteers, aged 18 to 82 without a history of severe trauma or nasal surgery. Electro-optical distance sensors were housed under a full-face protective mask attached to an analogue inspiratory flowmeter. The mean values for normal breathing were assessed at 675 [cm<sup>3</sup>/s] for the bilateral flow and −0.57 mm for the total movement. With forced breathing, the mean values for the flow of both nostrils were found to be 1434 cm<sup>3</sup>/s and for the total movement −1.21 mm. Statistically significant differences between normal and forced breathing were found in all participants and in both sexes, but no significant correlation by age. Electro-optical distance measurement, representing a novel technical way for the ‘elastography’ of the nasal valve should be added to advanced 4-phase-rhinomanometers.</p></div>\",\"PeriodicalId\":15168,\"journal\":{\"name\":\"Journal of biomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021929024004044\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024004044","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

鼻瓣膜的功能取决于吸气时鼻腔气流的强度、鼻腔入口的几何形状和鼻侧壁的机械特性。最好能获得有关气流和瓣膜运动之间关系的客观信息。在这项研究中,对 30 名年龄在 18 至 82 岁之间、无严重外伤或鼻部手术史的健康志愿者进行了鼻侧壁偏转和吸气流量的测量。电子光学距离传感器安装在全脸防护面罩下,与模拟吸气流量计相连。据评估,正常呼吸时,双侧流量的平均值为 675 [cm3/s],总移动量为-0.57 mm。强制呼吸时,双侧鼻孔流量的平均值为 1434 立方厘米/秒,总移动量为-1.21 毫米。所有参与者和男女在正常呼吸和强制呼吸之间都发现了明显的统计学差异,但与年龄没有明显的相关性。电子光学距离测量是鼻腔瓣膜 "弹性成像 "的一种新技术方法,应添加到先进的四相血压计中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantitative measurement of the flow depending nasal valve function by elastography with electro-optical distance sensors. A pilot study

Quantitative measurement of the flow depending nasal valve function by elastography with electro-optical distance sensors. A pilot study

Nasal valve function depends on the intensity of the inspiratory nasal airflow, the geometry of the nasal entrance and the mechanical properties of the lateral nasal wall. It is desirable to obtain objective information on the relation between flow and valve movement. In this study, the deflection of the lateral nasal wall and the inspiratory flow were measured on 30 healthy volunteers, aged 18 to 82 without a history of severe trauma or nasal surgery. Electro-optical distance sensors were housed under a full-face protective mask attached to an analogue inspiratory flowmeter. The mean values for normal breathing were assessed at 675 [cm3/s] for the bilateral flow and −0.57 mm for the total movement. With forced breathing, the mean values for the flow of both nostrils were found to be 1434 cm3/s and for the total movement −1.21 mm. Statistically significant differences between normal and forced breathing were found in all participants and in both sexes, but no significant correlation by age. Electro-optical distance measurement, representing a novel technical way for the ‘elastography’ of the nasal valve should be added to advanced 4-phase-rhinomanometers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信