{"title":"设计改进型无细胞鱼皮,作为组织再生应用的前景广阔的支架","authors":"Ali Esmaeili , Masoud Soleimani , Saeed Heidari Keshel , Esmaeil Biazar","doi":"10.1016/j.tice.2024.102567","DOIUrl":null,"url":null,"abstract":"<div><p>Decellularized marine tissues have been regarded as a desirable biomaterial because of their biological risk reduction, less religious constraints, and resemblance to mammalian tissues. The properties of these matrices can be improved by adding cross-linkers. In this study, after decellularization of the of Tilapia and Grass carp fish skin, a comparative study was conducted between them. Due to the higher abundance of collagen and glycosaminoglycans (GAGs) in Tilapia skin, it was selected for further study. In the next step, the cross-linking process was performed with three concentrations of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/ N-Hydroxysuccinimide (EDC/NHS) and tannic acid cross-linkers. The MTT results showed that the cross-linked samples with low concentrations of EDC/NHS had higher biocompatibility compared to the cross-linked sample with high concentration of EDC/NHS, as well as all samples cross-linked with tannic acid. Mechanical and physical studies conducted on the skin of Tilapia fish showed that the 15 mM/7.5 mM concentration of EDC/NHS increased the mechanical and temperature strength and decreased the degradability and it did not influence cell attachment.</p><p>In general, it was shown that different fish skins differ in terms of collagen and GAGs, and the optimal concentration of EDC cross-linker improves the mechanical and physical properties of the matrix derived from fish skin.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of improved acellular fish skin as a promising scaffold for tissue regeneration applications\",\"authors\":\"Ali Esmaeili , Masoud Soleimani , Saeed Heidari Keshel , Esmaeil Biazar\",\"doi\":\"10.1016/j.tice.2024.102567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Decellularized marine tissues have been regarded as a desirable biomaterial because of their biological risk reduction, less religious constraints, and resemblance to mammalian tissues. The properties of these matrices can be improved by adding cross-linkers. In this study, after decellularization of the of Tilapia and Grass carp fish skin, a comparative study was conducted between them. Due to the higher abundance of collagen and glycosaminoglycans (GAGs) in Tilapia skin, it was selected for further study. In the next step, the cross-linking process was performed with three concentrations of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/ N-Hydroxysuccinimide (EDC/NHS) and tannic acid cross-linkers. The MTT results showed that the cross-linked samples with low concentrations of EDC/NHS had higher biocompatibility compared to the cross-linked sample with high concentration of EDC/NHS, as well as all samples cross-linked with tannic acid. Mechanical and physical studies conducted on the skin of Tilapia fish showed that the 15 mM/7.5 mM concentration of EDC/NHS increased the mechanical and temperature strength and decreased the degradability and it did not influence cell attachment.</p><p>In general, it was shown that different fish skins differ in terms of collagen and GAGs, and the optimal concentration of EDC cross-linker improves the mechanical and physical properties of the matrix derived from fish skin.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040816624002684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816624002684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Design of improved acellular fish skin as a promising scaffold for tissue regeneration applications
Decellularized marine tissues have been regarded as a desirable biomaterial because of their biological risk reduction, less religious constraints, and resemblance to mammalian tissues. The properties of these matrices can be improved by adding cross-linkers. In this study, after decellularization of the of Tilapia and Grass carp fish skin, a comparative study was conducted between them. Due to the higher abundance of collagen and glycosaminoglycans (GAGs) in Tilapia skin, it was selected for further study. In the next step, the cross-linking process was performed with three concentrations of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/ N-Hydroxysuccinimide (EDC/NHS) and tannic acid cross-linkers. The MTT results showed that the cross-linked samples with low concentrations of EDC/NHS had higher biocompatibility compared to the cross-linked sample with high concentration of EDC/NHS, as well as all samples cross-linked with tannic acid. Mechanical and physical studies conducted on the skin of Tilapia fish showed that the 15 mM/7.5 mM concentration of EDC/NHS increased the mechanical and temperature strength and decreased the degradability and it did not influence cell attachment.
In general, it was shown that different fish skins differ in terms of collagen and GAGs, and the optimal concentration of EDC cross-linker improves the mechanical and physical properties of the matrix derived from fish skin.