Lina Qiu , Chuang Mei , Zhiping Qi , Jiaxin Yang , Na Li , Ming Li , Yunxia Sun , Jie Yang , Fengwang Ma , Ke Mao
{"title":"通过对苹果 CNGC 家族的全基因组分析,确定了 MdCNGC15A 对苹果耐盐性的负调控作用","authors":"Lina Qiu , Chuang Mei , Zhiping Qi , Jiaxin Yang , Na Li , Ming Li , Yunxia Sun , Jie Yang , Fengwang Ma , Ke Mao","doi":"10.1016/j.stress.2024.100606","DOIUrl":null,"url":null,"abstract":"<div><p>Calcium (Ca<sup>2+</sup>) is essential for signal conduction and plant growth. Cyclic nucleotide-gated channels (CNGCs) are Ca<sup>2+</sup> transporters that regulate Ca<sup>2+</sup> signalling and homeostasis by modulating its transmembrane transport, thereby influencing plant development as well as the biotic and abiotic stress responses. Although identified in numerous plant species, the CNGC family has not been characterized in apple until now. Here, 20 <em>MdCNGC</em>s were identified from the apple genome and were randomly distributed on 13 chromosomes. Phylogenetic analysis classified these <em>MdCNGCs</em> into five groups (I, Ⅱ, Ⅲ, Ⅳ-a, and Ⅳ-b), with five pairs of segmental duplicated genes being detected via collinearity analysis. Sequence alignment and analyses of gene structures, conserved motifs, and 3D structures indicated high structural conservation, particularly within groups. Yeast two-hybrid (Y2H) assays demonstrated interactions between most MdCNGCs and the Ca<sup>2+</sup> receptor MdCaM7.1, except for MdCNGC1B and MdCNGC15A. Promoter analysis and expression profiling revealed significant responses to abiotic stress, particularly salt stress, in some <em>MdCNGCs</em>. Silencing <em>MdCNGC15A</em> significantly enhanced apple plants salt tolerance, while its overexpression in apple calli significantly decreased tolerance, as shown by transgenic analysis. Collectively, our results demonstrate the crucial role of <em>MdCNGCs</em> in abiotic stress responses and provide valuable insights for future functional and regulatory studies in apples.</p></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100606"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667064X24002598/pdfft?md5=20c21f79ff04898b54b63bae388b952a&pid=1-s2.0-S2667064X24002598-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Genome-wide analysis of apple CNGC family allows the identification of MdCNGC15A negatively regulating apple salt tolerance\",\"authors\":\"Lina Qiu , Chuang Mei , Zhiping Qi , Jiaxin Yang , Na Li , Ming Li , Yunxia Sun , Jie Yang , Fengwang Ma , Ke Mao\",\"doi\":\"10.1016/j.stress.2024.100606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Calcium (Ca<sup>2+</sup>) is essential for signal conduction and plant growth. Cyclic nucleotide-gated channels (CNGCs) are Ca<sup>2+</sup> transporters that regulate Ca<sup>2+</sup> signalling and homeostasis by modulating its transmembrane transport, thereby influencing plant development as well as the biotic and abiotic stress responses. Although identified in numerous plant species, the CNGC family has not been characterized in apple until now. Here, 20 <em>MdCNGC</em>s were identified from the apple genome and were randomly distributed on 13 chromosomes. Phylogenetic analysis classified these <em>MdCNGCs</em> into five groups (I, Ⅱ, Ⅲ, Ⅳ-a, and Ⅳ-b), with five pairs of segmental duplicated genes being detected via collinearity analysis. Sequence alignment and analyses of gene structures, conserved motifs, and 3D structures indicated high structural conservation, particularly within groups. Yeast two-hybrid (Y2H) assays demonstrated interactions between most MdCNGCs and the Ca<sup>2+</sup> receptor MdCaM7.1, except for MdCNGC1B and MdCNGC15A. Promoter analysis and expression profiling revealed significant responses to abiotic stress, particularly salt stress, in some <em>MdCNGCs</em>. Silencing <em>MdCNGC15A</em> significantly enhanced apple plants salt tolerance, while its overexpression in apple calli significantly decreased tolerance, as shown by transgenic analysis. Collectively, our results demonstrate the crucial role of <em>MdCNGCs</em> in abiotic stress responses and provide valuable insights for future functional and regulatory studies in apples.</p></div>\",\"PeriodicalId\":34736,\"journal\":{\"name\":\"Plant Stress\",\"volume\":\"14 \",\"pages\":\"Article 100606\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667064X24002598/pdfft?md5=20c21f79ff04898b54b63bae388b952a&pid=1-s2.0-S2667064X24002598-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667064X24002598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24002598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Genome-wide analysis of apple CNGC family allows the identification of MdCNGC15A negatively regulating apple salt tolerance
Calcium (Ca2+) is essential for signal conduction and plant growth. Cyclic nucleotide-gated channels (CNGCs) are Ca2+ transporters that regulate Ca2+ signalling and homeostasis by modulating its transmembrane transport, thereby influencing plant development as well as the biotic and abiotic stress responses. Although identified in numerous plant species, the CNGC family has not been characterized in apple until now. Here, 20 MdCNGCs were identified from the apple genome and were randomly distributed on 13 chromosomes. Phylogenetic analysis classified these MdCNGCs into five groups (I, Ⅱ, Ⅲ, Ⅳ-a, and Ⅳ-b), with five pairs of segmental duplicated genes being detected via collinearity analysis. Sequence alignment and analyses of gene structures, conserved motifs, and 3D structures indicated high structural conservation, particularly within groups. Yeast two-hybrid (Y2H) assays demonstrated interactions between most MdCNGCs and the Ca2+ receptor MdCaM7.1, except for MdCNGC1B and MdCNGC15A. Promoter analysis and expression profiling revealed significant responses to abiotic stress, particularly salt stress, in some MdCNGCs. Silencing MdCNGC15A significantly enhanced apple plants salt tolerance, while its overexpression in apple calli significantly decreased tolerance, as shown by transgenic analysis. Collectively, our results demonstrate the crucial role of MdCNGCs in abiotic stress responses and provide valuable insights for future functional and regulatory studies in apples.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.