区间图和和弦图上最大独立集最小度贪婪算法的近似率

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Steven Chaplick, Martin Frohn, Steven Kelk, Johann Lottermoser, Matúš Mihalák
{"title":"区间图和和弦图上最大独立集最小度贪婪算法的近似率","authors":"Steven Chaplick,&nbsp;Martin Frohn,&nbsp;Steven Kelk,&nbsp;Johann Lottermoser,&nbsp;Matúš Mihalák","doi":"10.1016/j.dam.2024.09.009","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we prove that the minimum-degree greedy algorithm, with adversarial tie-breaking, is a <span><math><mrow><mo>(</mo><mn>2</mn><mo>/</mo><mn>3</mn><mo>)</mo></mrow></math></span>-approximation for the <span>Maximum Independent Set</span> problem on interval graphs. We show that this is tight, even on unit interval graphs of maximum degree 3. We show that on chordal graphs, the greedy algorithm is a <span><math><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span>-approximation and that this is again tight. These results contrast with the known (tight) approximation ratio of <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mi>Δ</mi><mo>+</mo><mn>2</mn></mrow></mfrac></math></span> of the greedy algorithm for general graphs of maximum degree <span><math><mi>Δ</mi></math></span>.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 275-281"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166218X24003986/pdfft?md5=3034910c4aa5dd66c10a2331bea125fc&pid=1-s2.0-S0166218X24003986-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Approximation ratio of the min-degree greedy algorithm for Maximum Independent Set on interval and chordal graphs\",\"authors\":\"Steven Chaplick,&nbsp;Martin Frohn,&nbsp;Steven Kelk,&nbsp;Johann Lottermoser,&nbsp;Matúš Mihalák\",\"doi\":\"10.1016/j.dam.2024.09.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article we prove that the minimum-degree greedy algorithm, with adversarial tie-breaking, is a <span><math><mrow><mo>(</mo><mn>2</mn><mo>/</mo><mn>3</mn><mo>)</mo></mrow></math></span>-approximation for the <span>Maximum Independent Set</span> problem on interval graphs. We show that this is tight, even on unit interval graphs of maximum degree 3. We show that on chordal graphs, the greedy algorithm is a <span><math><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span>-approximation and that this is again tight. These results contrast with the known (tight) approximation ratio of <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mi>Δ</mi><mo>+</mo><mn>2</mn></mrow></mfrac></math></span> of the greedy algorithm for general graphs of maximum degree <span><math><mi>Δ</mi></math></span>.</p></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"360 \",\"pages\":\"Pages 275-281\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24003986/pdfft?md5=3034910c4aa5dd66c10a2331bea125fc&pid=1-s2.0-S0166218X24003986-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24003986\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003986","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们证明了最小度贪婪算法与对抗性平局打破是区间图上最大独立集问题的 (2/3)- 近似。我们证明,即使在最大度数为 3 的单位区间图上,这一算法也是严密的。 我们还证明,在和弦图上,贪婪算法是 (1/2)- 近似算法,而且这一算法也是严密的。这些结果与已知的贪婪算法对最大度数为 Δ 的一般图的 3Δ+2 的(紧密)近似率形成了鲜明对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation ratio of the min-degree greedy algorithm for Maximum Independent Set on interval and chordal graphs

In this article we prove that the minimum-degree greedy algorithm, with adversarial tie-breaking, is a (2/3)-approximation for the Maximum Independent Set problem on interval graphs. We show that this is tight, even on unit interval graphs of maximum degree 3. We show that on chordal graphs, the greedy algorithm is a (1/2)-approximation and that this is again tight. These results contrast with the known (tight) approximation ratio of 3Δ+2 of the greedy algorithm for general graphs of maximum degree Δ.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信