原位还原法合成的等离子体 Bi/Bi4Ti3O12 异质结具有优异的压电光催化性能

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qianxin Xu , Yang Zhang , Meihong Lu , Beiwen Gan , Kai Zhang , Dawei Lu , Shirong Lin , Laijun Liu , Yumei Qin
{"title":"原位还原法合成的等离子体 Bi/Bi4Ti3O12 异质结具有优异的压电光催化性能","authors":"Qianxin Xu ,&nbsp;Yang Zhang ,&nbsp;Meihong Lu ,&nbsp;Beiwen Gan ,&nbsp;Kai Zhang ,&nbsp;Dawei Lu ,&nbsp;Shirong Lin ,&nbsp;Laijun Liu ,&nbsp;Yumei Qin","doi":"10.1016/j.surfin.2024.105115","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient catalytic conversion can be achieved by <span><span>electro-mechanical coupling a</span><svg><path></path></svg></span>nd solar energy-induced photogenerated carriers. In this work, an advanced semimetal Bi decorated Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> (Bi/BTO) heterojunction catalyst was constructed through <em>in-situ</em> reduction without organic solvent. The piezo-photocatalytic removal toward MB of Bi/BTO catalyst reaches 87.2% within 70 min, and the rate constant is 2.23 and 1.80 times higher than that of piezocatalysis and photocatalysis, respectively. The enhanced performance is attributed to not only surface plasmon resonance effect of Bi nanoparticles that enhances light absorption and accelerates charge separation, but also the piezoelectric effect of Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> which strengthens internal electric fields. Moreover, the metal titanium template can be recycled to synthesize Bi/BTO catalyst, thus favouring commercial-scale application. This work demonstrates an effective strategy to design efficient catalyst to utilize natural solar and mechanical energy.</p></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excellent piezo-photocatalytic performance of plasmonic Bi/Bi4Ti3O12 heterojunction synthesized by in-situ reduction\",\"authors\":\"Qianxin Xu ,&nbsp;Yang Zhang ,&nbsp;Meihong Lu ,&nbsp;Beiwen Gan ,&nbsp;Kai Zhang ,&nbsp;Dawei Lu ,&nbsp;Shirong Lin ,&nbsp;Laijun Liu ,&nbsp;Yumei Qin\",\"doi\":\"10.1016/j.surfin.2024.105115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Efficient catalytic conversion can be achieved by <span><span>electro-mechanical coupling a</span><svg><path></path></svg></span>nd solar energy-induced photogenerated carriers. In this work, an advanced semimetal Bi decorated Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> (Bi/BTO) heterojunction catalyst was constructed through <em>in-situ</em> reduction without organic solvent. The piezo-photocatalytic removal toward MB of Bi/BTO catalyst reaches 87.2% within 70 min, and the rate constant is 2.23 and 1.80 times higher than that of piezocatalysis and photocatalysis, respectively. The enhanced performance is attributed to not only surface plasmon resonance effect of Bi nanoparticles that enhances light absorption and accelerates charge separation, but also the piezoelectric effect of Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> which strengthens internal electric fields. Moreover, the metal titanium template can be recycled to synthesize Bi/BTO catalyst, thus favouring commercial-scale application. This work demonstrates an effective strategy to design efficient catalyst to utilize natural solar and mechanical energy.</p></div>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024012719\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024012719","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过电子机械耦合和太阳能诱导的光生载流子可实现高效催化转化。本研究通过无有机溶剂原位还原,构建了一种先进的半金属 Bi 装饰 Bi4Ti3O12(Bi/BTO)异质结催化剂。在 70 分钟内,Bi/BTO 催化剂对甲基溴的压光催化去除率达到 87.2%,速率常数分别是压催化和光催化的 2.23 倍和 1.80 倍。性能的提高不仅得益于 Bi 纳米粒子的表面等离子体共振效应增强了光吸收并加速了电荷分离,还得益于 Bi4Ti3O12 的压电效应增强了内部电场。此外,金属钛模板可回收用于合成 Bi/BTO 催化剂,从而有利于商业规模的应用。这项工作展示了设计高效催化剂以利用天然太阳能和机械能的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Excellent piezo-photocatalytic performance of plasmonic Bi/Bi4Ti3O12 heterojunction synthesized by in-situ reduction

Excellent piezo-photocatalytic performance of plasmonic Bi/Bi4Ti3O12 heterojunction synthesized by in-situ reduction

Efficient catalytic conversion can be achieved by electro-mechanical coupling and solar energy-induced photogenerated carriers. In this work, an advanced semimetal Bi decorated Bi4Ti3O12 (Bi/BTO) heterojunction catalyst was constructed through in-situ reduction without organic solvent. The piezo-photocatalytic removal toward MB of Bi/BTO catalyst reaches 87.2% within 70 min, and the rate constant is 2.23 and 1.80 times higher than that of piezocatalysis and photocatalysis, respectively. The enhanced performance is attributed to not only surface plasmon resonance effect of Bi nanoparticles that enhances light absorption and accelerates charge separation, but also the piezoelectric effect of Bi4Ti3O12 which strengthens internal electric fields. Moreover, the metal titanium template can be recycled to synthesize Bi/BTO catalyst, thus favouring commercial-scale application. This work demonstrates an effective strategy to design efficient catalyst to utilize natural solar and mechanical energy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信