应变工程对石墨烯类氮化硼膜高度可控的 H2 净化性能的影响:DFT 计算和 MD 模拟

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wentao Guo , Qihua Hou , Zhiyong Liu , Yongliang Yong , Hongling Cui , Shaobo Huang , Xinli Li , Xiaohong Li
{"title":"应变工程对石墨烯类氮化硼膜高度可控的 H2 净化性能的影响:DFT 计算和 MD 模拟","authors":"Wentao Guo ,&nbsp;Qihua Hou ,&nbsp;Zhiyong Liu ,&nbsp;Yongliang Yong ,&nbsp;Hongling Cui ,&nbsp;Shaobo Huang ,&nbsp;Xinli Li ,&nbsp;Xiaohong Li","doi":"10.1016/j.surfin.2024.105112","DOIUrl":null,"url":null,"abstract":"<div><p>To obtain high-purity hydrogen for industrial applications, it is highly desirable to separate and purify hydrogen from byproduct gases in hydrogen preparation. DFT calculations and MD simulations were performed to study the hydrogen separation performance of the graphenylene-like boron nitride (p-BN) monolayer under the modification of strain engineering. The p-BN membrane is thermal stable at high temperatures of 1500 K. Without strain engineering, the p-BN monolayer cannot be used as H<sub>2</sub> separation membranes at room temperature, as no H<sub>2</sub> gas can permeate from the membrane, however, it would be potential for H<sub>2</sub> separation at high temperatures (the H<sub>2</sub> permeance of 3.415 × 10<sup>5</sup>-2.732 × 10<sup>6</sup> GPU with high selectivity above 500 K). Strain engineering can effectively enhance the H<sub>2</sub> purification properties of the p-BN monolayer. At 9 % strains, the H<sub>2</sub> permeability of the p-BN membrane is 2.357 × 10<sup>7</sup> GPU at 300 K, much higher than the industrial acceptance value, while the selectivity of H<sub>2</sub> related to other gases (N<sub>2</sub>, CO, O<sub>2</sub>, CO<sub>2</sub>, and CH<sub>4</sub>) is 14.75, 33.09, 1.002 × 10<sup>2</sup>, 8.512 × 10<sup>5</sup>, and 1.502 × 10<sup>10</sup>, respectively. Therefore, our findings indicate that the p-BN membranes are excellent candidates for highly controllable and reversible H<sub>2</sub> separation and purification under modification of strain engineering.</p></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of strain engineering on the highly controllable H2 purification performance of graphenylene-like boron nitride membranes: DFT calculations and MD simulations\",\"authors\":\"Wentao Guo ,&nbsp;Qihua Hou ,&nbsp;Zhiyong Liu ,&nbsp;Yongliang Yong ,&nbsp;Hongling Cui ,&nbsp;Shaobo Huang ,&nbsp;Xinli Li ,&nbsp;Xiaohong Li\",\"doi\":\"10.1016/j.surfin.2024.105112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To obtain high-purity hydrogen for industrial applications, it is highly desirable to separate and purify hydrogen from byproduct gases in hydrogen preparation. DFT calculations and MD simulations were performed to study the hydrogen separation performance of the graphenylene-like boron nitride (p-BN) monolayer under the modification of strain engineering. The p-BN membrane is thermal stable at high temperatures of 1500 K. Without strain engineering, the p-BN monolayer cannot be used as H<sub>2</sub> separation membranes at room temperature, as no H<sub>2</sub> gas can permeate from the membrane, however, it would be potential for H<sub>2</sub> separation at high temperatures (the H<sub>2</sub> permeance of 3.415 × 10<sup>5</sup>-2.732 × 10<sup>6</sup> GPU with high selectivity above 500 K). Strain engineering can effectively enhance the H<sub>2</sub> purification properties of the p-BN monolayer. At 9 % strains, the H<sub>2</sub> permeability of the p-BN membrane is 2.357 × 10<sup>7</sup> GPU at 300 K, much higher than the industrial acceptance value, while the selectivity of H<sub>2</sub> related to other gases (N<sub>2</sub>, CO, O<sub>2</sub>, CO<sub>2</sub>, and CH<sub>4</sub>) is 14.75, 33.09, 1.002 × 10<sup>2</sup>, 8.512 × 10<sup>5</sup>, and 1.502 × 10<sup>10</sup>, respectively. Therefore, our findings indicate that the p-BN membranes are excellent candidates for highly controllable and reversible H<sub>2</sub> separation and purification under modification of strain engineering.</p></div>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024012689\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024012689","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了获得工业应用所需的高纯度氢气,从制氢过程中的副产物气体中分离和提纯氢气是非常理想的。研究人员通过 DFT 计算和 MD 模拟,研究了在应变工程修饰下,类石墨烯氮化硼(p-BN)单层的氢气分离性能。在没有应变工程的情况下,p-BN 单层在室温下不能用作氢气分离膜,因为没有氢气可以从膜中渗透出来,但它在高温下具有分离氢气的潜力(500 K 以上的氢气渗透率为 3.415 × 105-2.732 × 106 GPU,且具有高选择性)。应变工程可有效提高 p-BN 单层的 H2 净化性能。当应变为 9 % 时,p-BN 膜在 300 K 时的 H2 渗透率为 2.357 × 107 GPU,远高于工业接受值,而 H2 对其他气体(N2、CO、O2、CO2 和 CH4)的选择性分别为 14.75、33.09、1.002 × 102、8.512 × 105 和 1.502 × 1010。因此,我们的研究结果表明,p-BN 膜是在应变工程修饰下实现高度可控和可逆的 H2 分离和净化的绝佳候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of strain engineering on the highly controllable H2 purification performance of graphenylene-like boron nitride membranes: DFT calculations and MD simulations

Effect of strain engineering on the highly controllable H2 purification performance of graphenylene-like boron nitride membranes: DFT calculations and MD simulations

To obtain high-purity hydrogen for industrial applications, it is highly desirable to separate and purify hydrogen from byproduct gases in hydrogen preparation. DFT calculations and MD simulations were performed to study the hydrogen separation performance of the graphenylene-like boron nitride (p-BN) monolayer under the modification of strain engineering. The p-BN membrane is thermal stable at high temperatures of 1500 K. Without strain engineering, the p-BN monolayer cannot be used as H2 separation membranes at room temperature, as no H2 gas can permeate from the membrane, however, it would be potential for H2 separation at high temperatures (the H2 permeance of 3.415 × 105-2.732 × 106 GPU with high selectivity above 500 K). Strain engineering can effectively enhance the H2 purification properties of the p-BN monolayer. At 9 % strains, the H2 permeability of the p-BN membrane is 2.357 × 107 GPU at 300 K, much higher than the industrial acceptance value, while the selectivity of H2 related to other gases (N2, CO, O2, CO2, and CH4) is 14.75, 33.09, 1.002 × 102, 8.512 × 105, and 1.502 × 1010, respectively. Therefore, our findings indicate that the p-BN membranes are excellent candidates for highly controllable and reversible H2 separation and purification under modification of strain engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信