{"title":"关于肉类中小肠结肠耶尔森菌生物膜形成和关键差异表达基因的新见解:对食品安全和疾病预防的影响","authors":"Xiuqin Lou , Yue Wu , Zongzong Chen , Qian Zhang , Xiao Xiao , Zhiguo Fang","doi":"10.1016/j.ijfoodmicro.2024.110914","DOIUrl":null,"url":null,"abstract":"<div><p><em>Yersinia enterocolitica</em> is an important foodborne pathogen that can cause a zoonotic disease known as yersiniosis, which causes symptoms such as acute diarrhea, mesenteric adenitis, terminal ileum inflammation, pseudo appendicitis, sepsis, and other complications. The mechanism of biofilm formation in <em>Y. enterocolitica</em> remains poorly understood, with limited research available on this topic. This study systematically examined the distribution characteristics and biofilm formation ability of <em>Y. enterocolitica</em> isolated from poultry and livestock related samples. Analysis of food samples collected indicated significant presence of <em>Y. enterocolitica</em> (207/670, 30.9 %), particularly in frozen duck meat (7/11, 63.6 %). Majority of the isolated strains did not demonstrate biofilm-forming ability (52.7 %), while a notable percentage exhibited moderate (6.8 %) to strong (11.6 %) biofilm-forming ability. Additionally, a significant percentage of strains (16/207, 7.7 %) displayed extremely high optical density/cut-off OD (OD/ODC) ratios (the average OD value of each sample divided by the average OD value of the negative controls of each 96-well plate plus 3 standard deviations) (exceeding 10). Time-course analysis of biofilm formation in 10 isolates revealed three distinct patterns: (i) rapid increase from 6 h to 12 h, with gradual peak between 48 and 72 h followed by a slight decline and stabilization; (ii) little biofilm formation at 24 h with a gradual increase up to 96 h, maintaining this level until 120 h; and (iii) complete absence of biofilm formation throughout the experiment. Subsequent examination of differentially expressed genes (DEGs) in planktonic cells and biofilms of two strains with distinct biofilm formation capabilities identified seven metabolic pathways, including ribosome, photosynthesis, fatty acid degradation, valine, leucine, and isoleucine degradation, as well as pinene, camphor, and geraniol degradation. Significantly elevated expression levels of genes associated with flagellar assembly, bacterial chemotaxis, and quorum sensing (partially) were observed exclusively in planktonic cells of the selected strain with stronger biofilm-forming ability, implying that the heightened expression of flagellar assembly and bacterial chemotaxis-related genes is an important but not sole determinant of biofilm formation. The study contributes to the elucidation of the underlying mechanisms governing biofilm formation in <em>Y. enterocolitica</em> and may offer valuable insights for the advancement of novel food safety strategies.</p></div>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"426 ","pages":"Article 110914"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel insights into biofilm formation and the key differentially expressed genes in Yersinia enterocolitica from meat: Implications for food safety and disease prevention\",\"authors\":\"Xiuqin Lou , Yue Wu , Zongzong Chen , Qian Zhang , Xiao Xiao , Zhiguo Fang\",\"doi\":\"10.1016/j.ijfoodmicro.2024.110914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Yersinia enterocolitica</em> is an important foodborne pathogen that can cause a zoonotic disease known as yersiniosis, which causes symptoms such as acute diarrhea, mesenteric adenitis, terminal ileum inflammation, pseudo appendicitis, sepsis, and other complications. The mechanism of biofilm formation in <em>Y. enterocolitica</em> remains poorly understood, with limited research available on this topic. This study systematically examined the distribution characteristics and biofilm formation ability of <em>Y. enterocolitica</em> isolated from poultry and livestock related samples. Analysis of food samples collected indicated significant presence of <em>Y. enterocolitica</em> (207/670, 30.9 %), particularly in frozen duck meat (7/11, 63.6 %). Majority of the isolated strains did not demonstrate biofilm-forming ability (52.7 %), while a notable percentage exhibited moderate (6.8 %) to strong (11.6 %) biofilm-forming ability. Additionally, a significant percentage of strains (16/207, 7.7 %) displayed extremely high optical density/cut-off OD (OD/ODC) ratios (the average OD value of each sample divided by the average OD value of the negative controls of each 96-well plate plus 3 standard deviations) (exceeding 10). Time-course analysis of biofilm formation in 10 isolates revealed three distinct patterns: (i) rapid increase from 6 h to 12 h, with gradual peak between 48 and 72 h followed by a slight decline and stabilization; (ii) little biofilm formation at 24 h with a gradual increase up to 96 h, maintaining this level until 120 h; and (iii) complete absence of biofilm formation throughout the experiment. Subsequent examination of differentially expressed genes (DEGs) in planktonic cells and biofilms of two strains with distinct biofilm formation capabilities identified seven metabolic pathways, including ribosome, photosynthesis, fatty acid degradation, valine, leucine, and isoleucine degradation, as well as pinene, camphor, and geraniol degradation. Significantly elevated expression levels of genes associated with flagellar assembly, bacterial chemotaxis, and quorum sensing (partially) were observed exclusively in planktonic cells of the selected strain with stronger biofilm-forming ability, implying that the heightened expression of flagellar assembly and bacterial chemotaxis-related genes is an important but not sole determinant of biofilm formation. The study contributes to the elucidation of the underlying mechanisms governing biofilm formation in <em>Y. enterocolitica</em> and may offer valuable insights for the advancement of novel food safety strategies.</p></div>\",\"PeriodicalId\":14095,\"journal\":{\"name\":\"International journal of food microbiology\",\"volume\":\"426 \",\"pages\":\"Article 110914\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of food microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168160524003581\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168160524003581","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Novel insights into biofilm formation and the key differentially expressed genes in Yersinia enterocolitica from meat: Implications for food safety and disease prevention
Yersinia enterocolitica is an important foodborne pathogen that can cause a zoonotic disease known as yersiniosis, which causes symptoms such as acute diarrhea, mesenteric adenitis, terminal ileum inflammation, pseudo appendicitis, sepsis, and other complications. The mechanism of biofilm formation in Y. enterocolitica remains poorly understood, with limited research available on this topic. This study systematically examined the distribution characteristics and biofilm formation ability of Y. enterocolitica isolated from poultry and livestock related samples. Analysis of food samples collected indicated significant presence of Y. enterocolitica (207/670, 30.9 %), particularly in frozen duck meat (7/11, 63.6 %). Majority of the isolated strains did not demonstrate biofilm-forming ability (52.7 %), while a notable percentage exhibited moderate (6.8 %) to strong (11.6 %) biofilm-forming ability. Additionally, a significant percentage of strains (16/207, 7.7 %) displayed extremely high optical density/cut-off OD (OD/ODC) ratios (the average OD value of each sample divided by the average OD value of the negative controls of each 96-well plate plus 3 standard deviations) (exceeding 10). Time-course analysis of biofilm formation in 10 isolates revealed three distinct patterns: (i) rapid increase from 6 h to 12 h, with gradual peak between 48 and 72 h followed by a slight decline and stabilization; (ii) little biofilm formation at 24 h with a gradual increase up to 96 h, maintaining this level until 120 h; and (iii) complete absence of biofilm formation throughout the experiment. Subsequent examination of differentially expressed genes (DEGs) in planktonic cells and biofilms of two strains with distinct biofilm formation capabilities identified seven metabolic pathways, including ribosome, photosynthesis, fatty acid degradation, valine, leucine, and isoleucine degradation, as well as pinene, camphor, and geraniol degradation. Significantly elevated expression levels of genes associated with flagellar assembly, bacterial chemotaxis, and quorum sensing (partially) were observed exclusively in planktonic cells of the selected strain with stronger biofilm-forming ability, implying that the heightened expression of flagellar assembly and bacterial chemotaxis-related genes is an important but not sole determinant of biofilm formation. The study contributes to the elucidation of the underlying mechanisms governing biofilm formation in Y. enterocolitica and may offer valuable insights for the advancement of novel food safety strategies.
期刊介绍:
The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.