质子门控有机薄膜晶体管用于漏电集火卷积尖峰神经网络

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiang Wan , Shengnan Cui , Changqing Li , Jie Yan , Fuguo Tian , Haoyang Luo , Zhongzhong Luo , Li Zhu , Zhihao Yu , Dongyoon Khim , Liuyang Sun , Yong Xu , Huabin Sun
{"title":"质子门控有机薄膜晶体管用于漏电集火卷积尖峰神经网络","authors":"Xiang Wan ,&nbsp;Shengnan Cui ,&nbsp;Changqing Li ,&nbsp;Jie Yan ,&nbsp;Fuguo Tian ,&nbsp;Haoyang Luo ,&nbsp;Zhongzhong Luo ,&nbsp;Li Zhu ,&nbsp;Zhihao Yu ,&nbsp;Dongyoon Khim ,&nbsp;Liuyang Sun ,&nbsp;Yong Xu ,&nbsp;Huabin Sun","doi":"10.1016/j.orgel.2024.107144","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial spiking neurons, integral to the functionality of spiking neural networks, are designed to mimic the information transmission via discrete spikes in biological nervous systems. Traditional approaches that necessitate the charging of capacitors and the inclusion of discharge circuits for neuron membrane potential integration and leakage, present challenges in terms of cost and space efficiency. To overcome the challenges, this work proposes a hardware leaky integrate-and-fire neuron based on organic thin-film transistors. Under the electric field, the ion dynamics in the gate electrolyte can mimic the processes of membrane potential integration, leakage, and reset in spiking neurons. The convolutional spiking neural networks composed of such organic spiking neurons achieves excellent recognition rates (∼97.26 %) on the MNIST dataset. This indicates that the organic spiking neuron has enormous potential in next-generation non-von Neumann neuromorphic computing.</p></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"135 ","pages":"Article 107144"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proton-gated organic thin-film transistors for leaky integrate-and-fire convolutional spiking neural networks\",\"authors\":\"Xiang Wan ,&nbsp;Shengnan Cui ,&nbsp;Changqing Li ,&nbsp;Jie Yan ,&nbsp;Fuguo Tian ,&nbsp;Haoyang Luo ,&nbsp;Zhongzhong Luo ,&nbsp;Li Zhu ,&nbsp;Zhihao Yu ,&nbsp;Dongyoon Khim ,&nbsp;Liuyang Sun ,&nbsp;Yong Xu ,&nbsp;Huabin Sun\",\"doi\":\"10.1016/j.orgel.2024.107144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Artificial spiking neurons, integral to the functionality of spiking neural networks, are designed to mimic the information transmission via discrete spikes in biological nervous systems. Traditional approaches that necessitate the charging of capacitors and the inclusion of discharge circuits for neuron membrane potential integration and leakage, present challenges in terms of cost and space efficiency. To overcome the challenges, this work proposes a hardware leaky integrate-and-fire neuron based on organic thin-film transistors. Under the electric field, the ion dynamics in the gate electrolyte can mimic the processes of membrane potential integration, leakage, and reset in spiking neurons. The convolutional spiking neural networks composed of such organic spiking neurons achieves excellent recognition rates (∼97.26 %) on the MNIST dataset. This indicates that the organic spiking neuron has enormous potential in next-generation non-von Neumann neuromorphic computing.</p></div>\",\"PeriodicalId\":399,\"journal\":{\"name\":\"Organic Electronics\",\"volume\":\"135 \",\"pages\":\"Article 107144\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566119924001551\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001551","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人工尖峰神经元是尖峰神经网络功能中不可或缺的部分,旨在模拟生物神经系统中通过离散尖峰进行的信息传输。传统方法需要对电容器充电,并在神经元膜电位整合和泄漏时加入放电电路,这给成本和空间效率带来了挑战。为了克服这些挑战,本研究提出了一种基于有机薄膜晶体管的硬件漏电整合和放电神经元。在电场作用下,栅极电解质中的离子动力学可以模拟尖峰神经元的膜电位整合、泄漏和复位过程。由这种有机尖峰神经元组成的卷积尖峰神经网络在 MNIST 数据集上实现了出色的识别率(97.26%)。这表明有机尖峰神经元在下一代非冯诺依曼神经形态计算中具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Proton-gated organic thin-film transistors for leaky integrate-and-fire convolutional spiking neural networks

Proton-gated organic thin-film transistors for leaky integrate-and-fire convolutional spiking neural networks

Artificial spiking neurons, integral to the functionality of spiking neural networks, are designed to mimic the information transmission via discrete spikes in biological nervous systems. Traditional approaches that necessitate the charging of capacitors and the inclusion of discharge circuits for neuron membrane potential integration and leakage, present challenges in terms of cost and space efficiency. To overcome the challenges, this work proposes a hardware leaky integrate-and-fire neuron based on organic thin-film transistors. Under the electric field, the ion dynamics in the gate electrolyte can mimic the processes of membrane potential integration, leakage, and reset in spiking neurons. The convolutional spiking neural networks composed of such organic spiking neurons achieves excellent recognition rates (∼97.26 %) on the MNIST dataset. This indicates that the organic spiking neuron has enormous potential in next-generation non-von Neumann neuromorphic computing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信