Yong-Gang Fan , Ri-Le Ge , Hang Ren , Rong-Jun Jia , Ting-Yao Wu , Xian-Fang Lei , Zheng Wu , Xiao-Bei Zhou , Zhan-You Wang
{"title":"在 APP/PS1 转基因小鼠体内,源自星形胶质细胞的乳铁蛋白通过降低铁含量和 GPX4 降解抑制神经元铁突变","authors":"Yong-Gang Fan , Ri-Le Ge , Hang Ren , Rong-Jun Jia , Ting-Yao Wu , Xian-Fang Lei , Zheng Wu , Xiao-Bei Zhou , Zhan-You Wang","doi":"10.1016/j.phrs.2024.107404","DOIUrl":null,"url":null,"abstract":"<div><p>Increased astrocytic lactoferrin (Lf) expression was observed in the brains of elderly individuals and Alzheimer's disease (AD) patients. Our previous study revealed that astrocytic Lf overexpression improved cognitive capacity by facilitating Lf secretion to neurons to inhibit β-amyloid protein (Aβ) production in APP/PS1 mice. Here, we further discovered that astrocytic Lf overexpression inhibited neuronal loss by decreasing iron accumulation and increasing glutathione peroxidase 4 (GPX4) expression in neurons within APP/PS1 mice. Furthermore, human Lf (hLf) treatment inhibited ammonium ferric citrate (FAC)-induced ferroptosis by chelating intracellular iron. Additionally, machine learning analysis uncovered a correlation between Lf and GPX4. hLf treatment boosted low-density lipoprotein receptor-related protein 1 (LRP1) internalization and facilitated its interaction with heat shock cognate 70 (HSC70), thereby inhibiting HSC70 binds to GPX4, and eventually attenuating GPX4 degradation and FAC-induced ferroptosis. Overall, astrocytic Lf overexpression inhibited neuronal ferroptosis through two pathways: reducing intracellular iron accumulation and promoting GPX4 expression via inhibiting chaperone-mediated autophagy (CMA)-mediated GPX4 degradation. Hence, upregulating astrocytic Lf expression is a promising strategy for combating AD.</p></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":"209 ","pages":"Article 107404"},"PeriodicalIF":9.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1043661824003499/pdfft?md5=f4bacab0e0cb1852dc9c6eb5368dfb4e&pid=1-s2.0-S1043661824003499-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Astrocyte-derived lactoferrin inhibits neuronal ferroptosis by reducing iron content and GPX4 degradation in APP/PS1 transgenic mice\",\"authors\":\"Yong-Gang Fan , Ri-Le Ge , Hang Ren , Rong-Jun Jia , Ting-Yao Wu , Xian-Fang Lei , Zheng Wu , Xiao-Bei Zhou , Zhan-You Wang\",\"doi\":\"10.1016/j.phrs.2024.107404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Increased astrocytic lactoferrin (Lf) expression was observed in the brains of elderly individuals and Alzheimer's disease (AD) patients. Our previous study revealed that astrocytic Lf overexpression improved cognitive capacity by facilitating Lf secretion to neurons to inhibit β-amyloid protein (Aβ) production in APP/PS1 mice. Here, we further discovered that astrocytic Lf overexpression inhibited neuronal loss by decreasing iron accumulation and increasing glutathione peroxidase 4 (GPX4) expression in neurons within APP/PS1 mice. Furthermore, human Lf (hLf) treatment inhibited ammonium ferric citrate (FAC)-induced ferroptosis by chelating intracellular iron. Additionally, machine learning analysis uncovered a correlation between Lf and GPX4. hLf treatment boosted low-density lipoprotein receptor-related protein 1 (LRP1) internalization and facilitated its interaction with heat shock cognate 70 (HSC70), thereby inhibiting HSC70 binds to GPX4, and eventually attenuating GPX4 degradation and FAC-induced ferroptosis. Overall, astrocytic Lf overexpression inhibited neuronal ferroptosis through two pathways: reducing intracellular iron accumulation and promoting GPX4 expression via inhibiting chaperone-mediated autophagy (CMA)-mediated GPX4 degradation. Hence, upregulating astrocytic Lf expression is a promising strategy for combating AD.</p></div>\",\"PeriodicalId\":19918,\"journal\":{\"name\":\"Pharmacological research\",\"volume\":\"209 \",\"pages\":\"Article 107404\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1043661824003499/pdfft?md5=f4bacab0e0cb1852dc9c6eb5368dfb4e&pid=1-s2.0-S1043661824003499-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacological research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1043661824003499\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043661824003499","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Astrocyte-derived lactoferrin inhibits neuronal ferroptosis by reducing iron content and GPX4 degradation in APP/PS1 transgenic mice
Increased astrocytic lactoferrin (Lf) expression was observed in the brains of elderly individuals and Alzheimer's disease (AD) patients. Our previous study revealed that astrocytic Lf overexpression improved cognitive capacity by facilitating Lf secretion to neurons to inhibit β-amyloid protein (Aβ) production in APP/PS1 mice. Here, we further discovered that astrocytic Lf overexpression inhibited neuronal loss by decreasing iron accumulation and increasing glutathione peroxidase 4 (GPX4) expression in neurons within APP/PS1 mice. Furthermore, human Lf (hLf) treatment inhibited ammonium ferric citrate (FAC)-induced ferroptosis by chelating intracellular iron. Additionally, machine learning analysis uncovered a correlation between Lf and GPX4. hLf treatment boosted low-density lipoprotein receptor-related protein 1 (LRP1) internalization and facilitated its interaction with heat shock cognate 70 (HSC70), thereby inhibiting HSC70 binds to GPX4, and eventually attenuating GPX4 degradation and FAC-induced ferroptosis. Overall, astrocytic Lf overexpression inhibited neuronal ferroptosis through two pathways: reducing intracellular iron accumulation and promoting GPX4 expression via inhibiting chaperone-mediated autophagy (CMA)-mediated GPX4 degradation. Hence, upregulating astrocytic Lf expression is a promising strategy for combating AD.
期刊介绍:
Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.