Juan Zhang , Ao Shen , Yinbao Jin , Yinping Cui , Yifei Xu , Xiao Lu , Yiming Liu , Qi Fan
{"title":"中国代表性地区不同时期臭氧形成机制的演变","authors":"Juan Zhang , Ao Shen , Yinbao Jin , Yinping Cui , Yifei Xu , Xiao Lu , Yiming Liu , Qi Fan","doi":"10.1016/j.atmosenv.2024.120830","DOIUrl":null,"url":null,"abstract":"<div><p>Ozone (O<sub>3</sub>) is produced by photochemical reactions of NO<sub>X</sub> and VOCs in the troposphere under sunlight. The column densities of formaldehyde (HCHO) and nitrogen dioxide (NO<sub>2</sub>), derived from satellite data, serve as indicators of VOCs and NO<sub>X</sub> emissions in the troposphere. Through analyzing the unique characteristics of the threshold range for the HCHO/NO<sub>2</sub> ratio (FNR), the mechanisms of O<sub>3</sub> formation across different regions over a prolonged period can be identified. In this study, we utilized the Empirical Orthogonal Function (EOF) technique to characterize O<sub>3</sub> patterns during the warm season (April to October) spanning 2013–2019. This period is divided into three stages: 2013–2014, 2015–2016, and 2017–2019. Using the third-order fitting model, we assessed the FNR values across different regions in China: BTH (Beijing-Tianjin-Hebei), YRD (Yangtze River Delta), GD (Guangdong), and CY (Chuan-Yu). The FNR value ranges for these regions are as follows: ([1.2,2.0], [1.3,2.1], [2.4,3.2], [1.4,2.2]) during 2013–2014, ([1.1,1.9], [1.2,2.0], [2.0,2.8], [1.2,2.0]) during 2015–2016, and ([1.0,1.8], [1.0,1.8], [1.7,2.5], [1.1,1.9]) during 2017–2019, respectively. Ultimately, our research indicates a shift in certain regions from a VOC-limited regime towards a transitional regime. This shift correlates with a significant decline in anthropogenic NO<sub>X</sub> emissions, attributed to the stringent emission control strategies extensively implemented between 2013 and 2019. The spatial expansion of the transitional regime aligns with increasing O<sub>3</sub> concentrations, simultaneously offering guidance for the development of effective emission reduction strategies.</p></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"338 ","pages":"Article 120830"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of ozone formation regimes during different periods in representative regions of China\",\"authors\":\"Juan Zhang , Ao Shen , Yinbao Jin , Yinping Cui , Yifei Xu , Xiao Lu , Yiming Liu , Qi Fan\",\"doi\":\"10.1016/j.atmosenv.2024.120830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ozone (O<sub>3</sub>) is produced by photochemical reactions of NO<sub>X</sub> and VOCs in the troposphere under sunlight. The column densities of formaldehyde (HCHO) and nitrogen dioxide (NO<sub>2</sub>), derived from satellite data, serve as indicators of VOCs and NO<sub>X</sub> emissions in the troposphere. Through analyzing the unique characteristics of the threshold range for the HCHO/NO<sub>2</sub> ratio (FNR), the mechanisms of O<sub>3</sub> formation across different regions over a prolonged period can be identified. In this study, we utilized the Empirical Orthogonal Function (EOF) technique to characterize O<sub>3</sub> patterns during the warm season (April to October) spanning 2013–2019. This period is divided into three stages: 2013–2014, 2015–2016, and 2017–2019. Using the third-order fitting model, we assessed the FNR values across different regions in China: BTH (Beijing-Tianjin-Hebei), YRD (Yangtze River Delta), GD (Guangdong), and CY (Chuan-Yu). The FNR value ranges for these regions are as follows: ([1.2,2.0], [1.3,2.1], [2.4,3.2], [1.4,2.2]) during 2013–2014, ([1.1,1.9], [1.2,2.0], [2.0,2.8], [1.2,2.0]) during 2015–2016, and ([1.0,1.8], [1.0,1.8], [1.7,2.5], [1.1,1.9]) during 2017–2019, respectively. Ultimately, our research indicates a shift in certain regions from a VOC-limited regime towards a transitional regime. This shift correlates with a significant decline in anthropogenic NO<sub>X</sub> emissions, attributed to the stringent emission control strategies extensively implemented between 2013 and 2019. The spatial expansion of the transitional regime aligns with increasing O<sub>3</sub> concentrations, simultaneously offering guidance for the development of effective emission reduction strategies.</p></div>\",\"PeriodicalId\":250,\"journal\":{\"name\":\"Atmospheric Environment\",\"volume\":\"338 \",\"pages\":\"Article 120830\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1352231024005053\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231024005053","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Evolution of ozone formation regimes during different periods in representative regions of China
Ozone (O3) is produced by photochemical reactions of NOX and VOCs in the troposphere under sunlight. The column densities of formaldehyde (HCHO) and nitrogen dioxide (NO2), derived from satellite data, serve as indicators of VOCs and NOX emissions in the troposphere. Through analyzing the unique characteristics of the threshold range for the HCHO/NO2 ratio (FNR), the mechanisms of O3 formation across different regions over a prolonged period can be identified. In this study, we utilized the Empirical Orthogonal Function (EOF) technique to characterize O3 patterns during the warm season (April to October) spanning 2013–2019. This period is divided into three stages: 2013–2014, 2015–2016, and 2017–2019. Using the third-order fitting model, we assessed the FNR values across different regions in China: BTH (Beijing-Tianjin-Hebei), YRD (Yangtze River Delta), GD (Guangdong), and CY (Chuan-Yu). The FNR value ranges for these regions are as follows: ([1.2,2.0], [1.3,2.1], [2.4,3.2], [1.4,2.2]) during 2013–2014, ([1.1,1.9], [1.2,2.0], [2.0,2.8], [1.2,2.0]) during 2015–2016, and ([1.0,1.8], [1.0,1.8], [1.7,2.5], [1.1,1.9]) during 2017–2019, respectively. Ultimately, our research indicates a shift in certain regions from a VOC-limited regime towards a transitional regime. This shift correlates with a significant decline in anthropogenic NOX emissions, attributed to the stringent emission control strategies extensively implemented between 2013 and 2019. The spatial expansion of the transitional regime aligns with increasing O3 concentrations, simultaneously offering guidance for the development of effective emission reduction strategies.
期刊介绍:
Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.