Zixuan Chen , Xing Jia , Zhou Wang , Yuesong Cai , An Xu , Chengtao Han , Sheng Cheng , Min Liu
{"title":"TRIB3基因敲除可通过诱导铁变态反应提高透明细胞肾细胞癌对舒尼替尼的敏感性","authors":"Zixuan Chen , Xing Jia , Zhou Wang , Yuesong Cai , An Xu , Chengtao Han , Sheng Cheng , Min Liu","doi":"10.1016/j.cellsig.2024.111421","DOIUrl":null,"url":null,"abstract":"<div><p>Sunitinib resistance presents a significant challenge in the treatment of clear cell renal cell carcinoma (ccRCC). The role of TRIB3, a newly identified oncogene, in tumor drug resistance has been widely studied. However, the mechanism by which TRIB3 contributes to sunitinib resistance in ccRCC has not been previously explored. This study aimed to investigate the mechanism through which TRIB3 regulates ferroptosis to increase the susceptibility of ccRCC to sunitinib treatment. Bioinformatics analysis and experimental validation revealed that TRIB3 is significantly upregulated in ccRCC tissues and is associated with poor prognosis. Knockdown of TRIB3 using siRNA transfection inhibited the proliferation and migration of ccRCC cells and induced ferroptosis. Following sunitinib treatment, TRIB3 knockdown increased cell sensitivity to sunitinib, enhanced the suppressive impact of sunitinib, and augmented sunitinib-induced ferroptosis. This study demonstrated that TRIB3 knockdown induces ferroptosis by targeting the SLC7A11/GPX4 pathway and enhances therapeutic efficacy of sunitinib for ccRCC, providing new insights and potential strategies to overcome the challenge of sunitinib resistance in ccRCC.</p></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"124 ","pages":"Article 111421"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TRIB3 knockdown increases the sensitivity of clear cell renal cell carcinoma to sunitinib by inducing ferroptosis\",\"authors\":\"Zixuan Chen , Xing Jia , Zhou Wang , Yuesong Cai , An Xu , Chengtao Han , Sheng Cheng , Min Liu\",\"doi\":\"10.1016/j.cellsig.2024.111421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sunitinib resistance presents a significant challenge in the treatment of clear cell renal cell carcinoma (ccRCC). The role of TRIB3, a newly identified oncogene, in tumor drug resistance has been widely studied. However, the mechanism by which TRIB3 contributes to sunitinib resistance in ccRCC has not been previously explored. This study aimed to investigate the mechanism through which TRIB3 regulates ferroptosis to increase the susceptibility of ccRCC to sunitinib treatment. Bioinformatics analysis and experimental validation revealed that TRIB3 is significantly upregulated in ccRCC tissues and is associated with poor prognosis. Knockdown of TRIB3 using siRNA transfection inhibited the proliferation and migration of ccRCC cells and induced ferroptosis. Following sunitinib treatment, TRIB3 knockdown increased cell sensitivity to sunitinib, enhanced the suppressive impact of sunitinib, and augmented sunitinib-induced ferroptosis. This study demonstrated that TRIB3 knockdown induces ferroptosis by targeting the SLC7A11/GPX4 pathway and enhances therapeutic efficacy of sunitinib for ccRCC, providing new insights and potential strategies to overcome the challenge of sunitinib resistance in ccRCC.</p></div>\",\"PeriodicalId\":9902,\"journal\":{\"name\":\"Cellular signalling\",\"volume\":\"124 \",\"pages\":\"Article 111421\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular signalling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898656824003899\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656824003899","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
TRIB3 knockdown increases the sensitivity of clear cell renal cell carcinoma to sunitinib by inducing ferroptosis
Sunitinib resistance presents a significant challenge in the treatment of clear cell renal cell carcinoma (ccRCC). The role of TRIB3, a newly identified oncogene, in tumor drug resistance has been widely studied. However, the mechanism by which TRIB3 contributes to sunitinib resistance in ccRCC has not been previously explored. This study aimed to investigate the mechanism through which TRIB3 regulates ferroptosis to increase the susceptibility of ccRCC to sunitinib treatment. Bioinformatics analysis and experimental validation revealed that TRIB3 is significantly upregulated in ccRCC tissues and is associated with poor prognosis. Knockdown of TRIB3 using siRNA transfection inhibited the proliferation and migration of ccRCC cells and induced ferroptosis. Following sunitinib treatment, TRIB3 knockdown increased cell sensitivity to sunitinib, enhanced the suppressive impact of sunitinib, and augmented sunitinib-induced ferroptosis. This study demonstrated that TRIB3 knockdown induces ferroptosis by targeting the SLC7A11/GPX4 pathway and enhances therapeutic efficacy of sunitinib for ccRCC, providing new insights and potential strategies to overcome the challenge of sunitinib resistance in ccRCC.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.