考虑空间变异性,改进用于斜坡可靠性评估的土工材料参数贝叶斯模型更新

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
{"title":"考虑空间变异性,改进用于斜坡可靠性评估的土工材料参数贝叶斯模型更新","authors":"","doi":"10.1016/j.strusafe.2024.102536","DOIUrl":null,"url":null,"abstract":"<div><p>In engineering practice, Bayesian model updating using field data is often conducted to reduce the substantial inherent epistemic uncertainties in geomaterial properties resulting from complex geological processes. The Bayesian Updating with Subset simulation (BUS) method is commonly employed for this purpose. However, the wealth of field data available for engineers to interpret can lead to challenges associated with the “curse of dimensionality”. Specifically, the value of the likelihood function in the BUS method can become extremely small as the volume of field data increases, potentially falling below the accuracy threshold of computer floating-point operations. This undermines both the computational efficiency and accuracy of Bayesian model updating. To effectively address this technical challenge, this paper proposes an improved BUS method developed based on parallel system reliability analysis. Leveraging the Cholesky decomposition-based midpoint method, the total failure domain in the original BUS method, which involves a low acceptance rate, is subdivided into several sub-failure domains with a high acceptance rate. Facilitated with an improved Metropolis-Hastings algorithm, the improved BUS method enables the consideration of a large volume of field data and spatial variability of geomaterial properties in the probabilistic back analysis. The results of an illustrative soil slope, involving spatially variable undrained shear strength, demonstrate that the improved BUS method is effective in simultaneously incorporating a substantial volume of field measurements and observations in the model updating process. Through a comparison with the original BUS method, the improved BUS method is shown to be useful for Bayesian model updating of high-dimensional spatially variable geomaterial properties and slope reliability assessment.</p></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167473024001073/pdfft?md5=03862f608e5112a4db4d8519e06c7cf1&pid=1-s2.0-S0167473024001073-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Improved Bayesian model updating of geomaterial parameters for slope reliability assessment considering spatial variability\",\"authors\":\"\",\"doi\":\"10.1016/j.strusafe.2024.102536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In engineering practice, Bayesian model updating using field data is often conducted to reduce the substantial inherent epistemic uncertainties in geomaterial properties resulting from complex geological processes. The Bayesian Updating with Subset simulation (BUS) method is commonly employed for this purpose. However, the wealth of field data available for engineers to interpret can lead to challenges associated with the “curse of dimensionality”. Specifically, the value of the likelihood function in the BUS method can become extremely small as the volume of field data increases, potentially falling below the accuracy threshold of computer floating-point operations. This undermines both the computational efficiency and accuracy of Bayesian model updating. To effectively address this technical challenge, this paper proposes an improved BUS method developed based on parallel system reliability analysis. Leveraging the Cholesky decomposition-based midpoint method, the total failure domain in the original BUS method, which involves a low acceptance rate, is subdivided into several sub-failure domains with a high acceptance rate. Facilitated with an improved Metropolis-Hastings algorithm, the improved BUS method enables the consideration of a large volume of field data and spatial variability of geomaterial properties in the probabilistic back analysis. The results of an illustrative soil slope, involving spatially variable undrained shear strength, demonstrate that the improved BUS method is effective in simultaneously incorporating a substantial volume of field measurements and observations in the model updating process. Through a comparison with the original BUS method, the improved BUS method is shown to be useful for Bayesian model updating of high-dimensional spatially variable geomaterial properties and slope reliability assessment.</p></div>\",\"PeriodicalId\":21978,\"journal\":{\"name\":\"Structural Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167473024001073/pdfft?md5=03862f608e5112a4db4d8519e06c7cf1&pid=1-s2.0-S0167473024001073-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167473024001073\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473024001073","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

在工程实践中,经常使用现场数据对贝叶斯模型进行更新,以减少复杂地质过程导致的地质材料属性中固有的大量认识不确定性。为此,通常采用子集模拟贝叶斯更新法(BUS)。然而,可供工程师解释的大量野外数据可能会带来与 "维度诅咒 "相关的挑战。具体来说,随着现场数据量的增加,BUS 方法中的似然函数值会变得非常小,有可能低于计算机浮点运算的精度阈值。这既影响了贝叶斯模型更新的计算效率,也影响了其准确性。为有效应对这一技术挑战,本文提出了一种基于并行系统可靠性分析的改进型 BUS 方法。利用基于 Cholesky 分解的中点法,将原 BUS 方法中接受率较低的总故障域细分为几个接受率较高的子故障域。在改进的 Metropolis-Hastings 算法的帮助下,改进的 BUS 方法能够在概率回溯分析中考虑大量的现场数据和土工材料特性的空间变化。一个涉及空间可变排水抗剪强度的示例土坡的结果表明,改进的 BUS 方法能有效地同时将大量实地测量和观测数据纳入模型更新过程。通过与原始 BUS 方法的比较,证明改进的 BUS 方法适用于高维空间可变土工材料属性的贝叶斯模型更新和边坡可靠性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Bayesian model updating of geomaterial parameters for slope reliability assessment considering spatial variability

In engineering practice, Bayesian model updating using field data is often conducted to reduce the substantial inherent epistemic uncertainties in geomaterial properties resulting from complex geological processes. The Bayesian Updating with Subset simulation (BUS) method is commonly employed for this purpose. However, the wealth of field data available for engineers to interpret can lead to challenges associated with the “curse of dimensionality”. Specifically, the value of the likelihood function in the BUS method can become extremely small as the volume of field data increases, potentially falling below the accuracy threshold of computer floating-point operations. This undermines both the computational efficiency and accuracy of Bayesian model updating. To effectively address this technical challenge, this paper proposes an improved BUS method developed based on parallel system reliability analysis. Leveraging the Cholesky decomposition-based midpoint method, the total failure domain in the original BUS method, which involves a low acceptance rate, is subdivided into several sub-failure domains with a high acceptance rate. Facilitated with an improved Metropolis-Hastings algorithm, the improved BUS method enables the consideration of a large volume of field data and spatial variability of geomaterial properties in the probabilistic back analysis. The results of an illustrative soil slope, involving spatially variable undrained shear strength, demonstrate that the improved BUS method is effective in simultaneously incorporating a substantial volume of field measurements and observations in the model updating process. Through a comparison with the original BUS method, the improved BUS method is shown to be useful for Bayesian model updating of high-dimensional spatially variable geomaterial properties and slope reliability assessment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Safety
Structural Safety 工程技术-工程:土木
CiteScore
11.30
自引率
8.60%
发文量
67
审稿时长
53 days
期刊介绍: Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信