Zhiqiang Shan , Xiaohua Jia , Jin Yang , Zhaofeng Wang , Haojie Song
{"title":"纤维素基粘合剂辅助剥离大尺寸氮化硼纳米片,提高聚合物薄膜的热管理能力","authors":"Zhiqiang Shan , Xiaohua Jia , Jin Yang , Zhaofeng Wang , Haojie Song","doi":"10.1016/j.coco.2024.102094","DOIUrl":null,"url":null,"abstract":"<div><p>Boron nitride nanosheets (BNNS) are widely used as fillers for flexible thermal interface materials due to their excellent thermal conductivity and insulating properties. However, the interfacial thermal resistance between the BNNS hinders the rapid transfer of heat from the electronics. Herein, we introduced a cellulose-based “binder” (ENC/CMC) into the ball milling process to assist in the exfoliation of h-BNNS with large-size structures. The micro-scale interfacial friction force and macro-scale mechanical shear stress greatly enhance exfoliation efficiency. The highly dispersed cellulose/h-BNNS dispersions were mixed with an aqueous PVA solution, and densified films were obtained by the sol-gel-film conversion process. Large-sized h-BNNS are uniformly arranged in the cellulose network, resulting in a strong mechanical architecture and continuous thermal conductivity pathways in the PVA matrix. Consequently, the <span><span>ENC@h-BNNS/PVA-0.75</span><svg><path></path></svg></span> demonstrated thermal conductivity of up to 2.31 W/mK while achieving maximum tensile strength (168.4 MPa), which were increased by 950 % and 66.6 % over ENC/PVA film and showed excellent flexibility and thermal stability.</p></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"51 ","pages":"Article 102094"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellulose-based binder assisted exfoliation of large-sized boron nitride nanosheets for improved thermal management capability of polymer films\",\"authors\":\"Zhiqiang Shan , Xiaohua Jia , Jin Yang , Zhaofeng Wang , Haojie Song\",\"doi\":\"10.1016/j.coco.2024.102094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Boron nitride nanosheets (BNNS) are widely used as fillers for flexible thermal interface materials due to their excellent thermal conductivity and insulating properties. However, the interfacial thermal resistance between the BNNS hinders the rapid transfer of heat from the electronics. Herein, we introduced a cellulose-based “binder” (ENC/CMC) into the ball milling process to assist in the exfoliation of h-BNNS with large-size structures. The micro-scale interfacial friction force and macro-scale mechanical shear stress greatly enhance exfoliation efficiency. The highly dispersed cellulose/h-BNNS dispersions were mixed with an aqueous PVA solution, and densified films were obtained by the sol-gel-film conversion process. Large-sized h-BNNS are uniformly arranged in the cellulose network, resulting in a strong mechanical architecture and continuous thermal conductivity pathways in the PVA matrix. Consequently, the <span><span>ENC@h-BNNS/PVA-0.75</span><svg><path></path></svg></span> demonstrated thermal conductivity of up to 2.31 W/mK while achieving maximum tensile strength (168.4 MPa), which were increased by 950 % and 66.6 % over ENC/PVA film and showed excellent flexibility and thermal stability.</p></div>\",\"PeriodicalId\":10533,\"journal\":{\"name\":\"Composites Communications\",\"volume\":\"51 \",\"pages\":\"Article 102094\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452213924002857\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213924002857","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Cellulose-based binder assisted exfoliation of large-sized boron nitride nanosheets for improved thermal management capability of polymer films
Boron nitride nanosheets (BNNS) are widely used as fillers for flexible thermal interface materials due to their excellent thermal conductivity and insulating properties. However, the interfacial thermal resistance between the BNNS hinders the rapid transfer of heat from the electronics. Herein, we introduced a cellulose-based “binder” (ENC/CMC) into the ball milling process to assist in the exfoliation of h-BNNS with large-size structures. The micro-scale interfacial friction force and macro-scale mechanical shear stress greatly enhance exfoliation efficiency. The highly dispersed cellulose/h-BNNS dispersions were mixed with an aqueous PVA solution, and densified films were obtained by the sol-gel-film conversion process. Large-sized h-BNNS are uniformly arranged in the cellulose network, resulting in a strong mechanical architecture and continuous thermal conductivity pathways in the PVA matrix. Consequently, the ENC@h-BNNS/PVA-0.75 demonstrated thermal conductivity of up to 2.31 W/mK while achieving maximum tensile strength (168.4 MPa), which were increased by 950 % and 66.6 % over ENC/PVA film and showed excellent flexibility and thermal stability.
期刊介绍:
Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.